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IlTROCKflOI 

Tk® ©orrel&Mon of the reaotion rates aad ©quilibria of mota and para 

deritatives of hmsBm with substituant groups has been succesBfully under-

tskken by th® aufflnett aquation. The applicability of this ©mpirioal 

©quatioa in jMuiy reaetion series is a wsll-sstablishsd fact. 

fhere ara e®rfcaia otfesr cas®®, hGW®T©r, in which the BaEmett relation-

bMp iis not quite so a^plioable. la particular, it is neoessary to 

assign two values of th® substituant constant to the £ara-iaitro group, ono 

for the r«actioas of phenols and aaother for tho reaction of other 

b®a«©n® clerimtiv®®, 

A different class of reactions which show anomalous behavior with 

th© fiaarostt equation is th® solTolysis of bmz^l chlorides. The studies 

pertaining to this series of reactions have not been extensively nor 

systeaatioally carried out with reapest to the correlation of substituent 

effect &M reaotioa velocity. Since this olass offers a new and promising 

approach to the aaalysii of th® EaBisiett equation, ar: investigation was 

mdertaken to sorutinize the equation# la partieular, a study of 

substituted bea*yl tosylates was mde because of the crystalline nature 

and imaiabiguous solvolyses of these ooapouads. 

The solvolysi® 9f benzyl tosylates and the saponification of ethyl 

benzoates represent two reactions of opposed charge requirements. 

T&ereas the solvolysis of benzyl tosylate is facilitated by eleotron-

repelliag substituents the saponification of ethyl benzoate is retarded 

by these same groups. fhe extent to which substituents promote the 

solvolysis of benayl tosylate will depend on the ability of the 
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sul>stit«®at to stabilize th@ transition state. Th® magaitudo of tha 

staMlisation may be ®sp-eot®d to be MasurQd by th® daviation of the 

Siibstitueat from tii© Haiamett r®latlonship. 

'filth this iaterpratatioa in mind an iavestigation was initiated to 

determia® the rsXative conjugativ® aptitudes of the earbon - carbon 

double bond aafi tripl® bond. From a r@ry qualitative oonsideration of 

aol@oul0.r orbital theory, on® may expect th® tripl® bond to conjugate 

as w®ll as, if not better tlian, the rioubl® bond with an aromatic system, 

folan© R»d Stilbeiae were ehossn as th© basic systems to bo studied. 
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HISTQfilCAL 

fhe Bffeot of Substituants on Ghemioal Reactivity 

larly atteapts to oorrelat® structure with ohemical reactivity and 

physical properties provided a stiaulus for the development of modem 

theoretical organic chemistry. In this respect the interpretation and 

correlation of ©fleets produced by substituent groups in organic compounds 

have been one of th® foremost problems confronting organic chemists. 

Muaerous eii|>iriaal rules devised for classifying these effects before 

the successful application of electronic theory to chemistry by Lewis^ 

P ^ have been adequately summrized by latson'* and Eemiok . Subsequent 

studies from varied aspects of mechanistic organic chemistry contributed 

4 greatly to the coalescing of fundamental conceptions • fhus, concurrent 

studies of orientation in aromatic substitution, dipole moinsnt measure­

ments, reaction rates in solvolysis, equilibrium determinations of acid -

base systems and oxidation <- reduction potentials of organic con4)ounds 

helped to corroborrate and strengthen the theory. 

The basis for th® analysis of tha problem of substituent effects can 

be found in the nature of th© interaction of a series of substituents, S, 

with a parent molecule* R. In such a series of ooanpounds, R-S, it is 

^G.I. Lewis, J. Am. Chem. Soo., 762 (1916). 

^1. ftatson, **Modern Theories of Organic Chemistry", Second Edition, 
Oxford University Press, lew York, M.T., 1941. 

Eemick, ̂ Electronic Interpretations of Orgariic Cheadstry", Second 
Mition, Jotei Wiley and Sons, Inc., Mew York, K.Y., 1949. 

^C. Ingold, CheiB* Revs., IS, 226 (1934), 



www.manaraa.com

4 

to realize the type and magnitude of the perturbation effected 

by S across th® E-S bond. Of the number of systems of this type that 

can b® studied the beazenoid aromatie system, where E is benzene or its 

derivatiTes, has proven to be th© most aunenabla to empirical and theoret­

ical treatments. In subsequent disoussion, for the sake of convenience 

and without too much loss of generality, we shall restrict ourselves to 

this interesting system. 

The influence of substitueats on the reactivity of organic compounds 

has been interpreted in an illuaiaaatiag manner by the theory of electron 

B 
displaoemants . In essence, th© theory accounts for two distinct types 

of electronic effects, termed the inductive effect and electromeric 

effect. Each perturbation is considered to be independent and no attempt 

is Bade to relate tha dependence of one on the other. 

Inductive effect 

Studies on the resting state of a molecule by means of dipole 

measurements have been used to measure quantitatively the permanent 

polariJSiktiOT of a molecule . fhis affect is characterised by the electro-

7 8 
static interaction of an existing pole (electric change) or dipole with 

other centers in the molecule, thus causing an unsymmetrical distribution 

^C. Iiigold, inn* Ipts. Prog. Ghem., 23, 140 (1926). 
R. Eobiason, £. Uhea. Soc., 1445 (1932). 

Glasstoa®, *^extbook of Physical Chemistry, Second Edition, 
D. ¥an lostraad Co., Inc., lew York, U-.Y*, 1941, p. 543. 

^C. Ingold, Jgoa. Bpts. Prog. Chem., 129 (1926). 

Waters, «J. Chem. Soc., 1S64 (1933). 
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of electrons around theso centers* fhe magnitude of this effect is 

given by the following equations i 

©2 u(l + Soos^e)^" , , 

^pol® ® ' ^dipolo" 

Dr^ Dr® 

whare F is the field induced by oharg© e or dipole u at a distance r in a 

aedium of dielectric constant D. Iheta is the angle the dipole makes with 

the line oonneetiag it and th© reaction center. If (^is the polariz-

ability of a bond, defined by m »f<F « u induced , then the electrostatic 

energy due to th© field will be 

( 2 )  

Thus, for a pole, the induced electrostatic energy in a polarized bond 

n 2 
will vary as ©" and for a dipol® as u . For a particular polarized bond 

having a dipole moment u the magnitude of the induced charge, -a e, is equal 

to u/i"ab» '•^ber® r^^ is th© bond length. Pro® equations (l) it is seen 

that th® transfflission of the effects of a pole or dipole fall off rapidly 

with distance, the decrement depending on the polarisability of the inter­

vening bonds* From values of it has been calculated that the electro­

statically induced energy of a saturated carbon bond is 0.02 times the 

energy of the previous bond, while for an unsaturated double bond the 

9 
factor is O.S . In the case of an induction of charge by a pole or 

dipol® across 9B|)ty space the tera direct or field effect has been 

applied^®. 

Waters, "Physical Aspects of Organic Chemistry", Fourth Edition, 
D. Ifaa Mostrand and Co., Inc., lew York, M.Y., 1960, p. 283. 

Ingold and I. ¥ss8, £. Chea. Soc., 401 (1926). 
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7his offset differs from the induotiTO ©ffeot only by the medium through 

which it aots. 

ElQotroiaQrlc effect 

The i^parent aaoaftlies in th® orientation in aroraatic substitutions 

11 
oa th® basis of relative iaduotive effects together with inexplicable 

dipole fflofflents of aromtio oorapounds and ionization oonatants of substi-

12 
tuted beaaoio acids led to the postulation of the second electronic 

effect. fhe eleetromerio (raesoaerio or tautonwrio) effect was foimd to 

be operative only in conjunction with multiple bonds between atoms. 

Using the carbonyl group as an exaii^l©, th© effect prescribes that there 

exists a certain tendency for a pair of electrons con^trising the double 

bond to be associated exclusively with oxygen, the more electronegative 

atom. fhus, in the resting state of the carbonyl system the valency of 

carbon was considered to be somewhere between four and three, and that of 

oxygen between one and two. The C-0 bond thus possesses neither double 

nor single bond character, but an intermediate one. 

A theoretical basis for the semi-eB^jirical electronic theory of or^nio 

chemistry iwis been invoked throu^ the introduction of a more deductive 

1 '6 
and quantitative theory based on quantum mechanics . The fundamental 

concepts, however, remain much the same. The theory of the interaction 

Ingold and E. Ingold, J. Ghem. Soo., 1310 (1926). 

Watson, et ®a., ibid., 89S (1933). 

Van ¥leok and A. Sherman, Kev. Mod. Phys., 167 (1936). 
L. Pauling, ''Mature of the Chemical Bond*,"'Second Edition, Cornell 
University Press, Ithaca, S.Y., 1940. 
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of subetituent groups with unsaturated hydrocarbon radicals to which they 

are attached is no?^ considered from a Eiore fundamental standpoint 

involving the nature of the interaction of atomic and raoleoular orbitale. 

Seoause of its sIbijIot form ano adaptability to queuatitative calculations* 

the method of aiolecular orbitals has been the one most frequently applied 

to quaatuBi^ineohanical formulations of the complex organic systeras^^. 

In goneral, the new theory envisages the interaction of groups in 

two wayss 

i) fhe electric field of the substituent may polarize the radical 

ii) the group may form a TT-bond with the carbon atom to which it 

is attached. This effect may have repercussions on the TT-bond already 

present in the radical, _i-£*» the group participates in a molecular 

orbital with the carbon atom of the radical. 

The polarisation of the electric field has been visualized in two 

ways. Firstly, it is regarded as a purely electrostatic interaction as 

piotiired in the olassioal inductive effect. This effect ie considered 

to perturb the localized cf-bonds only^®. Secondly, the electrostatic 

interaction can also occur with the n-bond system of the radical in which 

case the field of the substituent causes changes in the TT-bond order of 

the radical. This effect has no counterpart in the classical inductive 

effect. Moreover, these two effects are not independent since a 

distortion of the <?-framework by inductive polarization will change the 

irom, Quart. Revs.» 6, 63 (1952). 

1%, Price and A. Walsh, Proc. Eoy. Soc., London, A191, 22 (1947). 
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fieM ia which the more or less aoalooalized T-electroas raov®. Sinoa 

th© polarizability of thelf-bonds is greater than that of the tf-bonde^® 

th© sffeiot of these latter forcas are longer in rang®. 

The olassioal mesomerie effect has been reinterpreted as a resonance 

pheaomenon^^ in the light of wave mechanics, to include the nonlocalized 

-bond Interaction of the unsaturated radical with the substituent group, 

the substituent can provide a p orbital, perpendicular to the benaene 

ring, which will extend the conjugation path of the fi-electrons in Ar-X 

, form new molecular orbitals). As this pj, orbital will in general 

b© occupied by one or two electrons (or can have the saae symmetry -

hyperoonjugation^®) th® ohange in th® number of fz-electrons will cause 

resulting changes ia the TT-electron energies. Since the non-classical 

inductive effect and resonance effect both operate on the t(-©leotron 

systetn, they are not indepaadent. Electron distribution in the <5"-bond 

will, thus, affect the TT-bond energy as well. 

The development of an eB|)iri©al correlation between chMnical and 

physical properties and structure nsQr be conveniently reviewed in the 

light of th® theories which were developed from them. A study of the 

resting state of the moleeule has been provided by dipole moment studies 

aad investigations of the iafra-red speotra for vibrational and rotational 

enargies^®. Further ea^irical correlations have been made with the 

^®A. Walsh, Quart. Revs., £, 73 (1948). 

Iheland, "The fheory of Resonance'*, John Wiley and Sons, Inc., 
lew York, K.I., 1944. 

^®S» Mullikm and C. Rieke, J. A®. Chem. Soc., 6S, 41 (1941). 
E. Berliner and P. Berliner, Ibid, 72, IIT (1950). 

lagold, et al., Chem. Soc., 912 (19S6). 
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photoeii«ioal excited state utilizing information obtained from ultraviolet 

sp®etra. Bquilibriua studies oa th@ eorrslatioa of structure and re-

aetiTity have been provided by aoid » bass systems and raversible 

oxidation - r©ductioift potentials. Thts study of aotivation processes 

inTolviag rates of reaotions, orientation in aromatic systems ana rrioleo-

ular rearraagataents have provided another tool for the examination of 

these effects. 

Studies ia dipole laoaeats provided a quantitative means of investi­

gating substituent effects. One of the first suceeBaful quantitative 

20 
applications of substitueat effects was made by lathan and Watson , who 

utilized the dipol® aoffients of substituted laetlmnes to obtain ionization 

constants of th® corresponding acetic acids. The ea^irical equation 

was formulated mt 

log I " log • C(u -cv; u^) (3) 

where the i'« repraaent ioaiisatioa constants, and C and o{ are empirical 

constants. the equation was subsequmtly extended to aromatic systems, 

fiegular correlations, however, could not be obtained with some para-

substituted acide (©,•£•» £-methoxybenaoio). The failure of this corre­

lation^^ for these acids was attributed to abnormal mesomerio interaction 

in the acid, which was not present in the parent ooi^ound. Similar 

discrepancies occurred when attests were made to apply dipole measure­

ments to th® constants and activation energies for the saponification 

Watson and B. iathaa, £. Qhea* Soc., 438, (1932). 

latson, frans. Faraday Soo», 34, 165 (1938). 
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2Z 
of esters. Studies by Sutton oa sMisomerio momenta bore out these 

p « 
suspicions. Audsley and Goss have been abl® to relate th® masomeric 

aoments of halobeazenes to the atomic number of the halogen. 

Th© study of chemical equilibria ana equilibrium ooastarits as a 

fuaotion of substituents is important and oonvenieat for several reasonsj  

(i) fhe equilibrium -sonstaat is independent of the reaction path 

the m®chaaisia of th© process), being a fxmetioa only of the 

difference in th© free energy of the reactants and the products. 

(ii) fhe equilibrixaa ooastaat is independent of the time of the 

reaction. A kaowledg© of th® equilibrium constants, thus, enables a 

study of the variation of substitueat groups. From a standpoint of 

oheKioal equilibrium, two classes of reactions have been extensively studied, 

viz., aeid - base prototropy and oxidation - reduction potentials of quinones. 

Several empirical rules for the determination of ionization constants 

24 of aon-aroiaatie aoida are given by Branch and Calvin Their method 

has been generalized to apply to aromatic acids by MoGowan The 

equation he used iss 

F » -Iifln K « A + BQ (4) 

twhere Q is a ooastaat for the substituent and A and B are constants. 

26 
fhe equation has recently been expanded to correlate reaction rates . 

Sutton, Proc. Boy. Soc*, London, 13SA, 668 (1931). 

Audsley and F. Gross, £. Ghea. Soc., 497 (1942). 

Branch and M. Calvin, "Th© Theory of Organic Chemistry", 
Prentice-Hall, Inc., lew York, H«y., 1941, p.183. 

McQowan, Ghem. and Ind., 63E (1948). 

McGowan, J. Soc. Oheia. Ind., 68, 253 (1949). 
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toother ©mpirical equation that has met with limited success is 

attributed to iiixon and Johns^"^ 

log K « - o) (5) 

where I represents the ionisation constant of a substituted aoid, x is a 

substituent « eoastant, known as the electron - sharing ability, and Q, 

a, b and e are eapirieal constants. The applications and limitations 

of this equation have reoeatly been reviewed^®. 

A Bior® theoretical approach to the problem has been treated by 

29 
Westheinier « He considers protonic ionization as a problem of the 

electrostatie interaction of a dipole field of a substituent with the 

ionizing proton. In this treatment lestheimer considers the free 

energy difference in ionization between substituted and unsubstituted 

aroBiatie aoids as the work required to reraove the ionizable proton from 

aa eleotrostatio field due to the dipole of the bond between the ring and 

the substituent. By considering the solute as occupying an ellipsoidal 

ea'9'ity in th® solvent, the effective raedium through which the electrical 

field operates oonsists of the bulk solvent and the molecule. The 

difference in free energy is then given for para-substituted benzoic 

acids ast 

eloos© 
Eel. • " 2.303 log K/g;^ (6) 

R^De 

Hixon and I. Johns, £. Am. Chem. Soo., 49, 1786 (1927). 

Schultz, Unpublished Doctoral Dissertation, imes, Iowa, 
Iowa Stat© College Library, 1950. 

lestheimer, «J. Ara. Chem. Soc», 61, 1977 (1939)» 
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where H is the dipol© raoiaont of th® substitueat, E the distance separating 

th® dipol® from the protoa, the angle between the dipole and the line 

joining its center to the proton and Dg the effective dielectic constant^ 

which takes into account the 8i2® and shape of the solute molecule and 

the nature of the medium separating the dipole and the proton. Since 

the benzene ring introduces the peculiarities mentioned previously, thia 

purely electrostatic treatment lias bean found to apply well for all sub-

stituents in the case of phenylaoetic acids only. Ck>od corijelations 

were obtained with most para-substituted bensoic acids, the exceptions 

being ̂ -mathoxybenzoic and £«hydro3iybenzoic acids. Phenols and anilines 

fitted well with experiaiental values} discrepancies, however, occurred 

with the £-<syano «id £»nitro derivatives. In general, acids, phenols 

and anilines deviating were those in which the dipole moment of the mole­

cules was not the sum ol th® dipoles of the constituent parts* The dis­

crepancies were ascribed to th® usual resoimnce interactions shown below. 

^ ^OH 0 

The lestheimer-iirkwood treatanent of ionization constants was applied 

by Saraousakis^® to aeia- subst itut ed aromtic acids, where resonance 

interactions are aot considered to be so in^ortant. Instead of using 

the prolate spheroidal model of Kirkwood and Westheimer to describe the 

Sarmausakis, £. Chem* Phys«, 12, 277 (1944). 
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solute cavity in tha solvant, Sarmousakia resortad to the mora difficult 

oblate spheroidal modal. In form tha equation he obtained was similar 

to the results obtained by the previous investigators, 

1 -9 ]Ug^|cos(ug^i,r) -0|u<p joo6(u^i,r) 
log Vk  — —T 

° 2.30Skf r^B^ r'^B^ 

where D^and ar© effective dielectric oonsteints corresponding to the 

dipole conponents and u^, . The application of this equation to 

laeta-substituted aromatie aoids yielded good correspondence with 

experimental values. in interesting application of this general formula 

was found for the para-substituted acids. The theoretically calciilated 

ana experimentally determined values of log VKq  showed differences, 

A log which may be considered a measure of the resonance energy 

operative over the electrostatic energy in the para-aeids. The median 

values of the log showed vary little meaja deviations in different 

solvents, which varied from pure alcohols and dioxane to binary solutions 

31 
with water. Judson and Kilpatrick have extended the treatment further 

to apply to meta- and para-»substituted phenols with good results. 

"iO 
It has been pointed out by Shorter and Stubbs that the change in 

ionization constants by two or more substituents in benzoic acid is very 

nearly the algebraic sum of th© effects of the individual groups. This 

principle of additivity has been applied to a number of di- and tri-

substituted benzoic aoids with surprising success. Although a uniformity 

Judson and M, ICilpatriok, £. Am. Cham. Soo«, 71, 3117 (1949). 

Shorter and P. Stubbs, J. Ghem. Soc., 1181 (1949). 
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of dalsa was not always possible (thus precluding discussions of small 

dsTiatlons) suoh ooH|sound8 as 3-nitro-4-itt®thoxy-'» 5-nitro-3-hy<iroxy-4-

m®thoxy, and b-B.itro-4»iiydroxy-3»m®tho35yb0nzolo acids showed small 

deviations from the Qxp®ct©d ?alu@6. Particularly unpredictable were 

the 213- and 2j6-8ubstitut©d aoids. 

toother aspect of ehenical equilibrium and aubstituent effect has 

been th@ imrestigation of the reTsrsibl® oxidation - reduction potentials 

of substituted quinones* Fieser®® stated en^irioally that groups which 

lower the potential of quinones facilitate substitution in the benzene 

ring. this was rationalieed in terme of the old electronic theory. 

Analyzing the situation from a more modern viewpoint. Branch and Calvin^"^ 

attribute the driving force (£•«,•» free energy difference) to a gain in 

resonanoe energy in the aromatic hydroquinone system over the quinoidal 

systeja. Berliner^® has shown that the potentials of many quinones are 

affected by changes in substitution in a manner fairly well predictable 

by means of the resonance and inductive efi'ect of the substituant groups. 

Since the oxidation - reduction potential is a measure of the free energy 

change of quinones to hydroquinones, an examination of the intrinsic 

difference between the two oompouads was considered necessary. He 

considered th© difference in es^irioal resonance energy of quinones and 

hydroquinones as an adequate index. A plot of the difference in 

f 

Fieser, Jm Am. Chem. Soc., 491 (1935). 

Branch and M, Calvin, ref. 24, p. 304. 

Berliner, J. Asi. Chem. Soo., 6^, 49 (1948). 
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resonance energy with oxidation potentials yielded a sarooth correlation. 

Hi and fakayaaa hav® applied a more theoretical treatment to the 

li^droqjuinone-quinoae equilibrium. They visualized the process as 

inTolTing the following equilihrias 

s V 2 1 " ^  +  C — =  q  +  2 e  —  0 - C ~ \  0  .  
1 £ S 4 

By assufaing that the suhatituents affected only equilibria 2 and 3, _i»e^«» 

by determining the amount of double bond character in the C-0 bond, they 

were able to calculate the difference in oxidation-potentials of sub­

stituted and xmsubstituted quinones* 

A quantura meohanioal study of the oxidation - reduction potentials 

of quinones was undertaken by Evans, Gergely and deHeer®"^. They applied 

the basic hypothesis of Branch and Calvin^^, to evaluate the energies of 

the lO-TT and 8<-Tf electrons in hydroquinone and quinone, respectively. 

The resonance or delocalization energy of the two was then calculated 

as a function of the electronegativity of the oxygen atoms and the bond 

energy of the oarbonyl link. This molecular orbital method, however, was 
,fv 

restrieted to quinone and polynuclsar quiaaones. Extension of the method 

to substituted quinones is possible if a consideration of the o-bond and 

Tf-bond perturbations by substituent groups is taken into account. 

In the li^t of a new and less quantitative molecular orbital theory 

®®f. Ri and M, fakayama, lev. Phys. Chem. Japan, 13, 153 (1946)j 
C.A,, M, 2872 (1960) . 

Bvans, J. Gergely and J. deHeer, frans. Faraday Soc., 46, 312 
U949). 
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tiX0 sufestituont effect has been restated by Evans and deHeer®®. Although 

th® overall result is not known, they believe that inductive and resonance 

effects Bfust be included in the treatment. They suggest a suitable 

Bjethod of attack as consisting of? 

(i) Variation of the position of th® substituent to determine the 

role of the inductiT© effect; 

(ii) Variation of both position and nature of the substituent ot 

determine the importance of the resonance effect. Since the stabili­

zation of th® quinone is given by the degree of conjugation, such para­

meters as the electronegativity of the attached center and the resonance 

integral between th© p^, orbital of the center and the carbon of the ring 

are included. 

The ultraviolet absorption spectra of a series of substituted 

3Q 
benzenes have been examined by Eoub and Vandenbelt in an effort to 

oorrelate structure with th© displacement of several bands in benaene, 

yjg.f the primary band (203 dju) and the secondary band (280 aai). They 

studied th© reguleirity in the araount of displacaraent of both the primary 

and secondary bands in the derivatives relative to those in benzene. 

They pictured th© absorption of mny meta- and para-substituted bensene 

oo^ounds ae a progression of at least three bands, which, regardless of 

the degree of displacement, maintained a relatively regular wavelength 

relationship. The displacement of th© primary band of benzene by 

Evans and J. delieer, i^art. Bevs«, £, 101 (1950). 

Boub and J. ?and©nb®lt, J. Am. Chem. Soc., 69, 2714 (1947). 
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substitution ms attributed to the electronic interaction of groups with 

the bensen® nucleus, thus lessening the constraint or force holding the 

electrons responsible for the absorption of light. The greatest dis­

placement was observed for those groups capable of the greatest electronic 

interaction across the ring (ortho;para group versus meta group) and least 

for those groups capable oi least interaction across the ring (ortho>para 

group versus orthoipara« meta versus meta). 

A quantity, S'^0, of the substituent was assigned as a measure of the 

electron-attracting or electron-repelling power of the substituent. 

From numerous empirical observations they deduced the following formulai 

i\l - SXo" ^ (8) 

where is the diBplacement of the primary band of beneene by disubst-

tution, and and iK are the corresponding displacements of each group 

separately in monosubstituted benzenes. Despite the limitations inherent 

in such an 0H|>iricai correlation the results look in^jressive. The method 

40 
was extended to the same type of substituents in the ortho and meta 

positions. The resulting equation was found to be applicable in these 

oasesJ 

/ ^ X o  ^  ^  S X o )  

( 9 )  

The success of this correlation was discussed in terms of the resonance 

stabilization of the ground state relative to the excited state and the 

Doub and J. ¥andenbelt, J. Am. Chem. Soo., 71, 2414 (1949). 
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nature of th© ©ffeot of th® sutostitusnt on both states. 

Hatsen^^ has combined fflolacular orbital theory and perturbation 

theory to derive general expressions for resonsuioe energies, resonance 

(mesomeric) moments, intensities and frequencies of ultraviolet ab­

sorption bands aiid tia© directing power of substituents and applicable 

to aromatic systems. Ha used an ©xperiinentalfyobtainable parameter,S 

( a measure of the electronegativity of th© substituent), whose value is 

estimble from ionization energies of the isiropl® coi!5>ounds containing 

the substituent. In many of the compounds he considered (e,£», phenol), 

resonano® lateraction between th© ring and the substituent was so im­

portant that other weak effects such as the inductive effect, were 

neglected. On that basis spectral properties could in general be corre­

lated with differences in ionization energies of substituted benzeneo 

and benzene itself. The smaller th© difference in ionization energy the 

greater was the perturbation of the benaene levels and longer the wave­

length and greater th© intensity of th® near ultraviolet absorption band. 

However, in the case of the halogenobenzenes a reversal occurred from 

the expected intensities of the bands. An introduction of a new 

parameter,^, , (a function of the electron affinity of the substituent), 

into the laBdltonian rectified the order. 

42 
Sklar has analyzed the intensification of the ultraviolet ab­

sorption bands of substituted benzenes over benzene on the basis of the 

Matsen, J. to. Chem. Soo., 7 2 ,  5243 (1950). 

Sklar, £. Chem. Phys., 7_, 984 (1939). 
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destruotion of the 6-fold Bymrotry of benzane by partial migration of 

»oa«bonding electrons from the substituent into the ring and by charge 

redistribution by induction of th© o'-eleetrons. The electric moment 

produced by th© migration of charge was calculated by the method of anti-

syiametrical aoleoular orbitals, considering parameters involving the 

ionisation potential of th© substituent, number of non-bonding electrons 

on th® substituent and th© distance of the substituent from the ring, 

fhespectra of fluorobeazene, aniline, phenol and toluene were discussed 

on this basis. 

fhe term "^spectroscopic moment** has been applied by Platt^® to the 

concept introduced by Sklar to describe th© indiKsed charge separation in 

th® excited state by substituents in benzene. Piatt has inspected the 

available intensity data for a large n*«aber of compounds in order to 

deteriaiJM the spectroscopic moment of various substituents. The spectro­

scopic ffloments sa^ were obtained from th© equations 

I - Ig • Hfflnosubstituted (10) 

=» + Em^m^) para-substituted (11) 

2 P 
» + m^ - ortho- or me^-substituted, (12) 

where is the unsubstituted intensity and I the substituted intensity? 

I is the proportionality factor. The values have been related to the 

directing power of the substituent in the aromatic substituents as well 

as to th© mesomeric moments obtained from dipole measurements. Rigorous 

correlations were not obtained due to th© fact that the spectroscopic 

Piatt, £. Shem. Phys», 19, 263 (1961) 
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mmnt introlTOs th® study of th® ground and excited states of a molecule, 

while dipol® measuresjents deal exclusively with th© ground state; 

directive abilities, on the other hand, involve ground state and inter-

Eiediate ooKiplex perturbations. llotahl© deviations occurred with fluorine 

and iodine, where la^ and u wers of equal mgnitude, and with the alkyl 

groins, where these <juantities were in opposite sequence. 

Further theoretical calculations of substituent effects on the 

spectra of benzene derivatives have been made by Price^^ and Herzfeld^®. 

fhe last aspect of substituent effects which we shall review is the 

aotivation process. The argument is essentially that treated by 

46 
GlasBtone, laidler and Eyring in their theory of rate processes. The 

essential feature of this theory is based on the concept that a chemical 

reaction is characterized by an initial configuration (reactants) which 

proceeds by continuous changes into the final configuration (products). 

The mechanism by which this process occurs is further characterised by 

some intermediate configuration, an activated con^lex or transition-

state, which is critical for the process in that it is situated at the 

highest point of the most favorable reaction path on the energy surface. 

The attaixasent of this oosaplex usually represents a high probability of 

the reaction going to oOEfiletioa. The study of reaction processes is 

Price, Chea. Revs., 257 (1947), 

^^0, Herzfeld, ibid., 250. 

46 
S, Glasstone, K. liaidler, E. Eyriag, "The Theory of Rate Processes". 
McGraw-Hill Book Co., Inc., Hew York, I.Y., 1941. 
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oenterffld to a great extent on tlx® requirements for the attainment of 

this con^lex. 

Orientation in aromatic substitution represents a fertile ground on 

which to study the effects of substitution on the free energy of 

47 aotivatioa. Ih© broad outlines ha-^rs heen reviewed recently . Early 

48 
studies by Ingold and oo-work©rs on ooir|)etition reactions in aromatic 

substitutions, utilising partial rate factors, have been extensively 

reviewed'^®. these studies led to the early eiripirical rules based on the 

electronic theory# 

Ih© most fruitful Mode of attack on the orientation problem has been 

aohieved by tha application of quantuni ineohanics. In a classic paper 

50 
Iheland and Pauling applied the molecular orbital approximation. They 

worked on the assumption that the rat© of aroraatio eleotrophilic substi­

tution at a particular nuclear carbon atom increases with iucreasing 

negatiTe Siiarg® on that carbon atom as the anionoid reagent approaches it 

la the transition state. they took into account permanoxit charge dis­

tributions in the ring produced by induction and resonance, as well as 

polariaability factors of the attacking rsageat in the transition state. 

They first made a caloulation oi* the relative ©lactron densities 

resulting irom different electron affinities ol the atoms in the systems 

Ferguson, Qhem* Revs., SO, bZ (iyfe2). 

Ingold, ®t sj., £. Chem. Soc., 2918 (1927). 

49 
E. Eeffliok, ref. 3, p» 357. 
G. Price, Chem» Revs., 29^, 37 (1941). 

Wheland and L. Pauling, J. Am. Chem. Soc., 57, 2087 (1935). 
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(induotiv© ©ffeot) and then ©xplloity included allT-orbitals of the 

system (r@8onanee ©ffeot). A small perturbation,^ , was then plaoed on 

©aeh carbon atom at a time (in addition to that due to permeoient polari-

aations) and the result of these charges on the electron densities at the 

various carbon atoms were calculated. It was found that in cases ^vhere 

strong induotiTe influenees are present (aniliniuia ion) the external 

perturbation has little or no effect on the orientation. However, in 

cases such as the halobenzeaes, it was found that the ortho and para 

positions are more polarizable than the meta position. 

51 
Iheland ^ has ii^roved on the underlying assumptions of this treat­

ment by considering more fully the nature of the transition state. f.here-

as early work included only perturbations by the attacking reagent, the 

more refined treatment focused attention on the energies of structures 

contributing to the activated con|5lex, in which a covalent bond is 

formed between the aromatio system and the reagent as shown below. 

Here ^ is positive, negative or neutral depending on wiiether the attacking 

species is electrophilic, nuoleophillc or free radical. The activation 

energy is discussed in terms of a polarization energy, which is the change 

in the it-electron energy between reactants emd the transition conplex. 

Coulson®^ prefers to call this '*looaliKation energy**. Thus, he pictures 

Iheland, £. Chem. Soc., 64, 907 (1942). 

Coulson, Research, 4, 30? (1961). 
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this quantity aa the ©nergy required to localize two, on© or aero 

T»©l0otroas at the tetrahedral carbon while leaTing the romainder of the 

T^-eXectroas undisturbed. Usiag th® values of this polarizatioa energy. 

Aw, Ihelaad predicted the »ost likely position in the ring to be substi­

tuted by the various reagents. For example, the following values for 

aitrobensene were oaloulated for aw in terms of ^(resorianoe integral for 

the G-G bond)J 

Point of attaok eleotrophilio auoleophilio free radical 

ortho 1.886 1,782 1.834 

aeta 1.852 1.882 1.852 

para 1.861 1.757 1.60S 

Applying the assuH^tion that the smaller the calculated value of aw for a 

given position, the more rapidly reaction proceeds at that point, it can 

be seen that these prediotioas do hold. 

Ixtensiv® valeao©»bond calculations of the effect of substitueats 

53 
have recently been carried out by th© French school . The essence of 

their oaloulaticmB involves modificatioas of the nature of the pertvir-

bation by substituents on the aromatic ring inherent in the valence-bond 

approach. 

54 
Ei and Eyring approached the problem from the transition state 

theory of rate prooessee. They assumed that in the transition state of 

Pullaaa, Goyt. rend., 222, S92 (1946)» 
A. PttllBsan, Bull*' soc. ohiai., France, IS, 392 (1946)j 
J. Ploquia, 646 (iSifJT"16, 359 (1949); 
0. Sandorfy, lbid.,t6, 616 (1949). 

®S. Ei and E. EjTiag, J. Ghem. Phys., 8, 4S3 (1940). 
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the reaction the dirferenca in froe saergy between substituted benaenas 

and benzen® lay in th® ®l®otrostatic interaction of the iaduoed charge at 

a position in the ring v/ith the charged attacking species. Calculating 

the charge distribution in tha ring of the substituted compound duo to 

th© inductive effect and resonano® effect of th© substitueat to be e , 

th© electrostatic eaergy was determined to be 

F * •.liy.i.iSi f (is) 

rD 

wh®r® % is th© oharge on th® attacking spsoias and r and D are suitably 

chosen values for the distano® separating th© charges and the dielectric 

constant through which th© oiiarges act in the transition state, respec­

tively. fh® ratio of the rat® oonataats for reaotioas at any carbon 

atom y in the substituted ooiapound and benzene is tiien 

- - a-WrDkl , 

This theory •?ms cheeked by oompetitive nitration studies. 

Assuraing that the nature of an intermediate ionic complex is inf»or-

tant In aroraatio ionic substitution reactions, Price'^® has atten^jted to 

deteraine the effects of substituents on the stability of this coii^ilex. 

He has introduced th® ^polarizing foro©'* of the substituent as one of the 

determining factors in the stability. Th© nature of the force is 

56 C. Price, £. M* Chem. Soe., 73, 5833 (1951). 
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(Jtssoribad as electrostatic, being evaluated by the equation 

\ \ ®b®6 

I «2 Z'— '  
b s r 

where is the charga on carbon atom b In the ring, ®s is the oharg® on 

atom s on the substitusat, ana r is tha distance separating the charges, 

i'ha rnagnitude of the chaxg® was obtained from values of the bond tnoKients. 

fhe ii^ortaiice ot a coiisider&tioa of the transition state for aro-

eg 
Biatio systems has been pointea out by Bordwall and Eohde . Xhoir 

deductions proosedod from ari obserTatloa of the ortho-para nitration 

of the riQgati-rely substituted sido chain of styrone. A similar 

fi7 
attention was placed by ?«aters on the role of the activated ooc^lex in 

determining aromtio orientations. He evaluated the energy difference 

between the ground ana traaBitioa states of a bimolecular reaction process 

by assutiiing a (juinoidal configuration of tne activated state. By 

assigning a large amount of bond localization to the quasi-quinoidal 

complex, he deduced (from oxiaation - reduction potentials of the corre­

sponding quiaones) the effects of polar substituents on the relative 

energy levels ox tiie various quiaoidal systems. 

ftestheiiner^® has applied the ixirkwood «• Vjostheiiaar treatment oi 

electrostatic influence to the rate of reactions of para-substituted 

BiroHiatio confounds. Assuming that the reaction proceeds via an activated 

Bordwell and K, Eohde, £. to. Chem. Soo«, 70, 1190 (i960). 

laters, £• Chea. Soo., 727 (I9'i8). 

Westheiaer, J« Ab. Ghoa. Soc., 62, 1892 (1940). 
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con|)lax, the effect of a dipolar substituent on the reaction velocity in 

a bimoleoular reaction involving one charged species isj 

eM cos 0 
log k - log » (16) 

2.303 kTR^D™ 
£ 

where k and k^ represent the rate constant of the para-substituted and 

unsubstituted compounds, respectively. Application to the saponification 

rates of phenylaeetate and hydroeinnamate esters was successful. In the 

case of benzoates, oinnatnates and benzaraides deviations were found with 

£-iaethoxy and £»aiHino substituted coa^ounds. He attributed these dis­

crepancies to the stability of the esters relative to the treinsition 

state as shown belowj 

^ ^OEt ^' OH 

Itten^jts to calculate the aiKJunt of resonance interaction were made by 

determining the relative rates of hydrolysis of ethyl 3,5-'dimethyl-4-

diaieti^laminobenzoate and ethyl S,5-dimethyl-4-8uninobenzoate®®. 

Ihen a bimoleoular reaction occurs between two uncharged molecules, 

the free energy change is related as 

SMiMg 
log k « ———— , (17) 

2.303 kTR®Dj^ 

where is the moa^nt of the substituent and Mg is the moment at the 

time of the reaetion in the transition state. is the internal 

dielectric constant. 

lestheimer, £• Jm» Chem. Soo., 63, 1341 (1941). 
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Of all til© en^irioal, semi-quantitatire or purely theoretical treat-

«®nts of structure of aromatic systems and chamical reactivity we have 

BO 
discussed, the Haffimett equation is by tar the most versatile. The 

wide applicability of this equation is indicated by its utility in 

kinetics and equilibria of reversible and non-reversible reactions, 

respectively, of heterolytio as well as hoiaolytic types. The equation, 

however, has been limited to meta- and para-substituted derivatives. 

Complications from ortho (steric or entropy) effects are well-known in 

61 
organic reactions . The theoretical basis for the Hammett equation 

shows the necessity of excluding these effects®^. It is for this reason 

that the equations are not applicable to ortho-substituted co^ounds. 

The equation is expressible in th© forms 

log k - log kjj « p<r (18) 

<r« log £ - log , (19) 

where k and k^ represent the rate or equilibriiim constants for the 

substituted and xmsubstituted compoixad, respectively, and K and Kq 

represent the ionization constants of the substituted and benzoic acids 

in water at 26°C. The physical relevance of (T ie apparent from equation 

(19). It is a constant depending on th® nature of the substituent group. 

Haimaett, "^Physical Organic Chemistry", MoGraw-iUll Book Co., 
Inc., Mew lork, i.I., 1940, p. 186. 

iSvans, Trans. Faraday Soc., 47, 40 (1961); 
J. Baker, J- Chem. Soc., 796 (1941)i 
P. lie LaMare, ibid., 2873 (1949). 

Banffliett, ref. 60, p. 118. 
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Similarly, ̂  as defined by squat ion (18), is a constant i'or a reaction 

80ri®is and is iadepeadent of th® substituants. 

In addition to th® fifty-seven reactions listed "by liammett which 

include the saponification rates of asters, dissociations constants of 

phenols and anilinas, and tha hydrolysis of benzyl chlorides, in recent 

yaars such diTsrsa raactions ass the Friadal-Crafts reaction of aromatic 

confounds with acetyl chloride , alkylations with ethyl arylsulfonates , 

acid-oatalyaed anionotropic roarrangsmaiits of alcohols®®, oxidation-

f̂ f\ 
reduction potentials of substituted quinones , polarographic half-wave 

67 
potentials of benzaldehydes and acetophenones and homolytic cleavages 

68 
of aroyl peroxides hav® been correlated. The validity of the Hammett 

equation is, thus, well established. Before 1940 there /^ere 1763 re­

actions applied to it? of these 232 showed a median deviation of only 

IBfi between the calculated and observed values . The trend recently 

has been to analyze the equation critically and to apply it to the study 

of reaction meohanisas and substitueat effects. 

The Hammett equation has been conpared from an empirical standpoint 

McDuffie and Q, Dougherty, £. to. Chem. Soc., M, 297 (1942). 

Cretoher and L, Morgan, ibid., 70, 375 (1948). 

Braude and E« Stern, Chem, Soo., 1096 (1947). 

®%. Evans and J. deHeer, Quart. Revs«, j4, 108 (19B0). 

®'^F. Schulz, ref. 28, p. 78. 

®®C. Swain, W. Stookmayer and J. Clarke, £. M. Chem. Soc., 72, 5427 
(1950)} J. Cooper, £. Chem. Soc., 3106 (1951). 

Swain and I t .  Langsdorf, ibid., 7£, 2813 (1961). 
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70 
by McGowan who has suocaeded in correlating it with the ©mpirical 

constants of tha previously cited equation (4). Similar con^arison 

studies have been mad© with the Hixon-Johns treatment of' the electron-

71 ahariiig abilities of substituants • 

72 Prio® has applied the concepts developed by Ei and Eyring to 

derive "theoretically" the liainmett equation. In a series of reactions 

h© assumes th® difference in activation energy between the substituted 

and unsubstituted confound to be 

= , (20) 
rD 

where e and a are the parameters defined by Ri and Eyring. The 

application of the Arrhenius equation leads to 

2.303 rRBT 

73 
utilising Haaroett's <r-values, Jaffe has succeeded in applying the 

HK)l®oular orbital method to derive a consistent set of parameters oi 

(Coulomb integral) and ft (resonance integral) for a series of meta- and 

para-substituted benaane derivatives. These parameters were used to 

calculate with good results ©lection densities at various positions in 

the ring, th® absorption frequencies, and resonance moments of these 

McGowan, Soc..Chem. Lad., 68, 254 (1949). 

71 
F» Sohulz, see ref. 67» 

Price, Chem. Revs., 29, 37 (1941). 

*^^1. Jaffe, J. Chem. Phys., 27S (1952). 
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74 oon^ounds. Recently Jaif® has ©xtandsd the treatment to predict 

unkaown. eoastants of substituted biphenyloarboxylio acids. 

The application of th© Hammett equation in its kinetic form has 

led som® investigators to speculate on th® transition state of certain 

75 
reactions. lalling and oo-workers correlated the equation with the 

bimolecular radical copolyraerization of substituted styrene with methyl 

Methaorylat® and styrena. Prom the variation of the C constant with 

the relative reactivities of various substituted styrene monomers with 

styrene, they were able to speculate on the importance of polar inter­

actions between substituted styrenes and growing radicals in the trans­

ition state, and also on the effect of the substituents on the stability 

of the transition state. Similarly they accounted for deviations of 

£«niethoxystyrene in its copolymerization with methyl methacrylate by 

the importance of non-bonded polar structures in the activated complex 

as shown below» 

®G(Me)2 
ii 'I 

i<^l GOOH 

u 
68 

An analogous reasoning was applied by Swain, Stookmayer and Clarke 

to the uniffiolecular radical decomposition of substituted benzoyl per­

oxides. By eliminating radical induced decomposition by the addition of 

Jaffe, Presented before the Buffalo Meeting of the American 
Chemical Society, April, 1952, p. 8ii abstracts. 

f7K 
C. Walling, E. Briggs, K. lolfstirn and F. Myo, £. to. Chem. Soo», 
70, 1537 (1948). 
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inhibitors, tliay obtained reasonable fits of the logarithm of the uni-

laoleoular rat© constant ifsith Yhe weakening of th® 0-0 bond was 

attributed to the iJEportanoe of electron-repelling groups in contri­

buting to the creation of two opposed dipoles in the transition state. 

0" 0" 
+ ) I /•=\_ + 

GHgO^^ y=C-0-0-G=<(^_ ̂  OCHg 

»-

76 
Swain and Langsdorf have interpreted the f> constant in displace­

ment reactions in terras of the extent of bond-forming and bond-breaking 

procesees in the transition state. The interdependence of and (T is 

showi in the case of the reaction of substituted benzyl chlorides with 

77 
amines. A similar argument was applied by Braude and Stern to the 

acid-catalyzed $inionotropio rearrangement of arylpropenylcarbinols and 

styryImeti^loarbinol8. 

In recent years the HamMtt equation has also been frequently 

utilized to assess electronic influence of substituent groups in aromatic 

rings, Roberts , on the basis of th© comparison of the sigma constaxits 

obtained fro® the apparent ionization constants of meta- and para-tri-

methylsilylbenzoic acids ana the reaction rates of these acids with 

diazodiphenyliaethane, together with some dipole moment data* concluded 

that the effect of the trimethylsilyl group was due largely to the 

electropositiTe or electron-releasing properties of silicon relative to 

^®C» Swain and W, Langsdorf, £. Am. Chem. Soc., 73, 2815 (1951), 

Braude and 1, Stern, Chem, Soc>, 1098 (1947). 

Roberts, E. McElhill and R, Armstrong, J. Chem. Soc., 7J^, 
2923 (1949). 
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carboa. It seemed that no important resonance interaction ooours 

between the ring and the substitu®nt group. 

79 
Further studies by Eobarts and oo-workars in determining tha sigma 

oonstant for trifXuorojaethyl-substituted anilines and benzoic aoids led 

them to ooaolude that an inportant ©fl'eot of the group can be shown asf 

p 

A purely olassieal inductive effect was attributed to the trimethyl-

80 
aamonium grovtp on the basis of similar studies . Corresponding 

81,82,83 
investigations of the electrical effects of oethylsulfonyl , 

aethylsulfone®^, methyl sulfide®^*acetyl®^, and cyano®^ groups have 

been raade* 

fhe Solvolyses of Ben«yl Systems 

The benayl system has been used extensively by early workers to 

study the effects of side chain reactions of substituted bentene deriva-

Roberts, 1. Webb and E. IcElhill, J. to. Cheta. Soc., 7£, 409 
(I960). 

Roberts, t. Clement and S. McElhill, Ibid., 72, 409 (1950). 

Bordwell and 0. Cooper, ibid., 74, 10&9 (1952). 

®^C. Prioa and tl. %dook, ibid., TA, 1943 (1952). 

Kloosterisiel aaid H. Backer, Rec. trav. chiia., 71, 298 (1982). 

loberts and 1. McElhill, ibid., 72, 628 (1950). 
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of:: 
tiv®s» In most cases the imiiaolecular solvolyses were carried out in 

binary solutions of aoetoae or ©timnol and water. Studies included those 

86 87 
by Olivier and Bennett and Jones of benayl chlorides in acetone-water, 

83 
ethanolysis of beazhydryl chlorides by Hughes, Ingold and Taher and 

hydrolysis of benzyl bromides in aqueous alcohol by Shoesmith and 

89 90 
Slater . An interesting observation was made by Miller and Bernstein 

who found that the hydrolysis of benzyl fluorides in ethanol-water 

solutions was acid-catalyzed. The trend for the substituted fluorides 

seemed to be that the more reactive ones showed a higher degree of acid-

catalysis. Particular attention was paid by nmny workers in this field 

to the abnormal reactivity of £-fluoro- and £-methoxybenzyl compounds. 

A detailed study of the solvolyeis of benzyl chlorides and benzyl 

91 
nitrate in dioxane-water solutions was made by Hammett and co-workers : 

GgfigCHgCl + ; CgHgCHgOH + + CI" 

CgHgCHgOIOg + ligO ^1 . GgH^CHgOH + + NOg . 

Hughes, Trans. Faraday Soc., 37, 603 (1941). 
1. Hughes, Quart» Revs., £, 245 TTSSI). 

Olivier, Sec. trav. chim., 996 (1930). 

^"^0. Bennett and B. Jones, J. Chem. Soc., 1815 (1935). 

Hughes, C. Ingold and S. Taher, ibid., 950 (1940). 

Shoesmith and T» Slater, ibid., 221 (1926). 

Miller and J* Bernstein, £. Am. Chem. Soc., 70, 3600 (1948). 

Best® and L. Hammett, ibid., 2481 (1940). 
G. Lucas and L. Haiismett, ibid., 64, 1928 (1942). 
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Both reactions showed & pronounced salt effect. The following tables 

show the percentage increase of the rate of solvolysis due to added solute 

fabl® 1 

Solvolysis of Benzyl Chloride 

Solute^ Percent Increase 

Benzyl chloride -5.9 
Benzyl alcohol -1.7 
Bioxano -0.6 
BDl -2.9 
HOI and benzyl alcohol -7.0 

laCl -4.3 
HaOAc -8 
ImC104 +7.6 
iffil04 +6.0 

*^0.75 M. ester and 0.05 M. salt. 

Table 2 

SolTolysis of Benayl Hitrate 

Solute® Percent Increase 

IftC104 15.62 

15.51 

no, 2.61 
5 

*^0.1 M. ester and 0.1 M. salt. 
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The authors suggested a possible mechanism for the solvolysis to bes 

CgHgCHg 4^ HgO^i^CgHgCHgOH + HgO"^ 

GgHgCI^ + CgHgGHgCl 

Cg%Ca| + OAo* CgHgCHgOAc . 

Studies on the aotion of salts, however, indicated that the intermediate 

formation of a carbonium ion was doubtful. A more suitable raechanisra 

is suggested by Swain's hypothesis of termolecular displacemant re­

actions®^ . 

Additional studies by Hanimett and McCleary on the reaction of ethyl 

tosylate with water and halide ion yielded the relative reactivities with 

the corresponding halides. 

SsOEt + 2H2O fsO" + ItOH + HgO"*" 

TsOEt + X" -TsO" + EtX 

The order of reactivity was given ast 

ItOTs *. EtI ; EtBr ; EtCl in a ratio 5.& : 1.0 { 0.96j 0.048. 

Ho salt and little comiaoa-ion effect was found. 

94 
Baker ' has attainted to analyse the variation in reactivity of 

substituted benzyl halides by considering the nature of the difference 

between the ground state and the transition state of the solvolysis. 

Swain, J. M, Chem. Soo., 70, 1119, 2989 (1948). 

loCleary and L. Hammett, ibid., 65, 2E54 (1941). 

Baker, fraas. Faraday Soc., 37, 63S (1941). 
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fable S 

Solvolysis of Ethyl £-Toluenesulfonate 

Solute^ Percent Increase 

BtOTs -0.5 

HftClO^ 0 

Maf sO -2.5 

laCl -6.0 

KBr -6.0 

KI 12.5 

®'0,1 li, estsr and 0.1 M. salt 

On th® basis of qualitative reasoning he has assigned quantitative values 

of th® oontributions of th® inductive and mesoineric effects to the energy 

levels of substituted benzyl chlorides, both in the transition state and 

in th© ground state. The differences of the suimned effects were directly 

related to the reactivity of the side chain. 

A more quantitative interpretation of side chain effects has been 

treated by Swain and Langsdorf . Prom analysis of the rho constant 

from the Iferaraett equation they discuss th® deviation of £-methoxybenzyl 

ehlorid® in its reaction with amines. A consideration of the various 

bond orders in th® traxisition state of the reaction was given. 

Swain and W, Langsdorf, £. to. Ghem. Soo., 73, 2813 (19&1). 
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A Conparisoa ol Stiiyleiies and Acetylenes 

The reactions imrolTing aoetyleaic linkages have been well docu-

96 
rasnted . The coraparison of the aoetylenic bond with ethylenic bond 

may b® conveniently made from two aspects, chemical reactivity and 

physical properties and the theories deduced from them. 

Th® earliest study of these two unsaturated systems was made by 

Baker, Cooper and Ingold^' who analyzed the relative amounts of the 

various isoiaars resulting from the quantitative nitration or phenyl-

propiolic and cinnaraio acids and their ethyl esters. They found the 

percentage of th® isomers to bes 

Coapouad ortho meta para 

propiolic acid 8 85 27 

ethyl propiolate 6 58 36 

cinnamio acid ortho-para exclusively 

ethyl einnaiaat© » w »i 

56 
Eeoently Bordwell and liohd® have interpreted the directivity of 

the beta~substituted side chain in terms of the transition state of the 

reaction. 

Johnson, '^The Chemistry of Acetylene Alcohols'*, Edward Arnold 
Oo«, London, 1948. 
A. Jolmsoa, "ih® Qhemiatry of Acetylene Acids", Edward Arnold Co., 
London, 1950. 

Baker, K» Cooper and C. Ingold, J. Ghent. Soc., 427 (1928). 
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A kinetic analysis of the rearr&nf^jnient of non-conjuj',ated unsatu-

OO 
rated aloohols was made 'by Braucie and Jones" . After establishing the 

first-ordsr aoid-oetalyzad r©arrangements of these systQins, they postu­

lated th® following jneohanisiaj 

- C(Eg} - C(R^) « CH JC R^lgC = C(Rg) - CCR^) - C = CH 
OH "^OHg 

slow 

EgO 
^1 

Sj^RgC - C(lg) « G{E^) - G = CH fast r.CCRg).-. G(R^) - C^CH 

OH OHg OHg 

They obtained tk® ratios of the first order rat® constants, for 

several substituted isomers of th© aoetylenic alcohol and the analogous 

ethylene compound. the results •weres 

• » 12,000 * H»s all H 

©thyiiyl ^ 3,000 , Ej, and Eg = M© 

» 3,200 , R| » Me 

= 240 , and =• M® 

fh@y accounted for this variation in th® ratio of rata constants by 

attributing sntaller eleotron-attractiag powers to the vinyl group as 

oorapared to th® ©thynyl group. Thus they state; 

I'ha highsr tha multiciplicity of the linkage, greater 
number of electrons shared, th® greater is the electron 
deficiency of th© constituent atoins and thus the negative 
inductive effect of th® aoetylenic group would be e3i5)ected 
to b® much greater than that of th© ethylanic group. 

Brauda and B» Jones, J. Ghem* Soo«, 129 (1946). 
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Table 4 

Bates of Searrangasient and Ionization Constants 

CoK^JOuad lO'^k^ Aoid lo\ 

Cfl2-CH«C&.CiM(0l)-Cs€ii 0.11 EChQ-GOOH 1400 

CH3-GH«Ca-CE(0H)-e=a«C^^ 16,& C4iig-C-C-C00H 140 

CHg«Cl-Cl«Cl(Ol)-CS-Ciig 34& CHg-CH-GOOM 5.5 

Further sTidenoe for this was cited in. listing the ioai^ation constants 

of several acids. 

qg 
Dippy" haa arrived at a siiailar oonclusioii to tl'iis by inspecting tiia 

Kj^'s of various acids. On coi!|3aria,g aoetylenos with ethylenes, ha states, 

...ths greater the degre© of unsaturation the more pronounced th® 

intriasic attraction for ©Isctrons becomes". Tha obscurity of this 

100 
interpratation has been pointed out by Burawoy . 

Hannion ana Haloney^^^ tiave atterepted to determine tlie stabilities 

of structures such as 1 and 11 in th© transition stata of the solvolysis 

of 3-ohloro-3-iu®thylbutyn©»l. 

Dippy, Cheta. Mrs,, 179 (19S9). 

xoo 
A. Burawoy, Vol. GofflHiemoratif Yiotor Henri, Liege, 1948, p. 78. 

Henaison and D» Maloney, J. &m* Cham. Soo., 73, 4736 (1951). 
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- C » CH - c = CH 

CHg^ CHg^ 

I II 

The values for th® unimoleoular processes at 25°G. ar® compared for 

sii^lar confounds* 

Table 5 

Ionization Constants of Unsaturated Aoids 

Acid 10%i 

CgHg-G5G-G00H 590 

Cglg-CH-Gl-COOH 3.65 

CgHg-CIg-GHg-COOH 1*67 

CH3-GSC-COOH 222.8 

GHg-CH»CH-GOOH 2.OS 

CHg-Cfig-CHg-GOOH 1.54 

Although solvolyses have not been carried out on analogous olefinio 

oon|»omds. Young and Andrews^®^ have determined the solvolysis rate at 

25®G. of th© iw>r-3«inethyl coupound under slightly different conditions. 

102^^ Young and L» Andrews, J. Am. Chem. Soo., 66, 421 (1944). 
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TaWe 6 

Solvolyees of Unsaturated Alkyl Chlorides 

CofflpouMs Conditions k(hr7^) 

3-C hloro-S-mathylbutyne»l 80% BtOH - %© 7.4 X lO"^ 

60^; EtOH - HgO 4.3 X lO"'^ 

60^ aoeton® - 1^0 1.93 X 10"® 

1-C MLoro-S-metiylbutadiaas-l,2 80^ BtOH - HgO 0 

t-ianyl ohlorida 8(̂ i EtOH - HgO 5.55 X 10"^ 

Table 7 

Sol-rolysss of Unsaturated Alkyl Chlorides 

CoHHOund Conditions k(hr"^) 

-2 
S-Chlorobutane-l 50?J EtOH - IgO 4.11 x 10 

lOC^p; BtOH 2.11 X 10"^ 

l-Ghlorobut®ne-2 509^ StOH - IgO 5.32 x lO"^ 

100^ EtOH 2.20 X Ib"^ 
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10'5 
Eobertson aad co-workers studiad the bimolaoular addition of 

bromine to a series of olefins and their aoetylenic analogs. An inter­

esting interpretation of the relative effects of substituents on the 

reactivities of the unsaturated compounds was given. 

fh@ quantum-meohanioal representation of ethylenio and aoetylenic 

bonds has been described lucidly by Coulson^®^. In brief, the ethylenio 

bond is considered to consist of a cf-bond, oomposed of two overlapping 

2 
«p atomio orbitals of trigonally hybridised carbon atoms, together with 

aff-bond resulting from the overlap of two p-Tf atomic orbitals. In 

acetylene, the overlap of two sp hybrid orbitals of digonally hybridised 

carbon forms a ©"-bond, whieh is supplemented by two pairs of p-Tt orbitals, 

p and p , to form two mutually perpendicular iv-bonds. 
«/ 

The far-ultraviolet absorption spectra of these unsaturated systems 

have been theoretically resolved by lalsh^^®. The ionization potential 

of ethylene has been found to be 10.50 volts, which compares with 11.41 

volts for acetylene. The larger ioniaation potential of acetylene was 

interpreted as a consequence of the larger s character, and hence tighter 

binding of the o-electrons^^, of the tf-bond in acetylene (sp-sp) as 

9 P 
compared to etiiylene (sp -sp ). Thus, the repulsion between these 

^-electrons and the TT-electrons is considered to be less in the case of 

103p, Robertson, 1. Dasent, P. Silburn and ¥f, Oliver, J. Chem. Soc., 
628 (ligO). 

Coulson, Quart. Revs., 2, 144 (1947). 

Walsh, to. Hpts., S2 (1947). 

lalsh. Disc. Faraday Soc, £, 19 (1947). 
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acetylenes than in ethylenes. fereover, the tighter binding of th® 

TT-sleotrons in aoetylen®, as a result of this, led Walsh to postulate a 

smaller conjugating power with other unsaturated systems. Thus, the 

shift in the absorption maxima of various stems is: 

Oompound max.^^^ Region (1) 

benzene 1,790 2,000 

phea^^laeetylene 1,910 2,390 - 2,200 

styren® 1,950 2,400 - 2,300 

107 
Pullman and Pullman observed a similar shift in the longer wave­

length region. The following values are listed for the near-ultraviolet 

absorption spectraj 

Compound max»^°'"^ 

styrene 282 

stilbene 295 

phenylaoetylena 278 

tolane 279 

Th© oorrelation between atom hybridization and electronegativity 

has been further clarified by Walsh^®®, 

Pullman and B. Pullman, Diso» Faraday Soo., £, 51 (1950). 

108 'A. Walsh, ibid., 2, 21 (1947). 
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Tabls 8 

Properties of Some Hydrocarbons 

Yalenoy 
C Atom 
Hybrid. 

-0. 
r ^CE 

10"®I(CH) 
(dyne/cm.) 

E(CH) 
(kcal./mole) Dipole 

CM radical P 1.120 4.09 80 

sp® 1.094 4.79 104 H''" 

.P^ 1.087 e.io 106 O
 1 

•p 1.089 5.85 121 
s, — S++ 

C H 

Two fundam^ital principles ar© stated by lalshs 

(i) The more s oharaoter in a carbon valency, the more 
electroaegatiT® is the carbon atom in that valency, 
(ii) If a group l-i attached to carbon, is replaced by a 
more electronegative group I, then the carbon valency 
toward Y has more p character than it had toward X. 

109 
Jtotsen has applied a simplified molecular orbital theory to cal­

culate the wave*leagth of maximum absorption of styrene smd phenyl-

acetyl ene* In his calculations he assumed that in acetylene only one p-TT 

orbital interacts strongly -with the benzene ring at a time, as in styrene. 

The difference in the two arose in the oaloulations from the difference in 

bond order between the alpha and beta carbon atoms of the side chain; 

thas© bond orders ar® two in acetylene and one in ethylene. The results 

are given as» 

Matsen, J. Am. Chein. Soo., 72, 5256 (1950). 
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Frequency 1 > ir/yg 

CoBjiOund (om."^) calc. obs, 

styrene 34,761 0.14 0.087 

phsnylaeetylene 36,370 0,092 0.045 , 

iffh®r© Tg and r represent the frequencies of the 0-0^^® band in beneene 

and subistituted, beiiBene, respeetively. 

Mat«®n, J« Am. Chera. Soo., 72, 5245 (1950). 
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ESPERIMMTAL 

Tho Preparation of Substituted Stilbenes and Tolanes 

Preparation of S- and 4»oarboxystilbene 

Tha 4-<3arboxystilben© ms prepared by the method of Meearwein, 

Buchnsr and Emster^^^, which involves th® reaction of oimiainic aoid with 

4-aarboxybenz®nediaaoniuja aoetat®. The yields, based on several attenpts, 

were not as good as that reported in the literature^^^. Yield - 12%, 

Malting point - 248.1-248.4®C. 

The oorreaponding S-oarboxy-isomer was prepared in oa analogous 

iBanner using the S-oarboxybenzenediazonium salt. The maximum yield from 

several attempts was Melting point - 197.0-i97.5°C. 

Preparation of 3- and 4»oarboxytolane 

To a suspension of 1.6 g. of 3-carboxystilb@ne in 160 ml. carbon 

tetrachloride, a solution of 1.6 ml. of bromine in 25 ml. of carbon 

tetrachloride was added dropwise. The solution was then warmed on a 

water bath at 70®C. and allowed to react for twenty minutes, cooled and 

filtered. The resulting light yellow colored solid was reerystallized 

from absolute ethanol. The colorless dibromide, obtained in B7% yield, 

melted at 246-248°C. 

To a solution of 60 g. of potassium hydroxide in 100 ml. absolute 

ethanol was added 2.4 g. of S-carboxystilbene dibromide, in order to 

^^%®erTwein, Buohner and Emster, £. prakt. Ghem., 152, 237 (1939). 

J'uson and H. Cooke, J. Am. Chem. Soc., 62, 1180 (1940). 
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affeet d®hydrobroHiination. After th® solution was refluxed for twenty 

hours, it was poursd into a slurry consisting of 200 g. orushad ioe and 

500 ml. water. Twenty peroent hydroohlorio aoid was then slowly stirred 

in until the solution was acid to litmus. The orude 3-oarboxytolane 

was reorystallized sawral times from aquaous ethanol solution. 

Yield - Malting point - 160-161°G. 

Preparation of 4»'earl?oxytolan® 

The preparation of 4«-carboxytolan® was carried out in a similar 

manner. Seventeen grams of 4«earboxystilb0n0 was suspended in 800 ml. 

carbon tetraohlorid©. A solution of 5.2 ml, bromine ia 200 ml. carbon 

tetraehlorid® was then added slowly. The mixture was then heated on a 

water bath for one-half hour, oooled and filtered, and then washed twice 

with boiling ethanol. The white crystalline dibromide in the form of a 

fin® powder melted at 267-269®C. It was obtained in 91ft> yield. To 

dei^drohalogenate the dibroMde, 20 g. was treated with a solution of 

80 g. potassium hydroxide in 140 lul. absolute ethanol and refluxed for 

thirty-six hours. The solution was then filtered and the filtrate 

acidified in the usual tmxm@r* The crude, flooculent 4-carboxytolane, 

after recrystallizatioa from ethanol, twice, melted at 220.5-221.0°C, 

Yield - 7#;. 
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labl® 9 

Physical Constants of ths Unsaturated Aeids 

Keutralizatioa Analysis 
Melting Point Equivalent® Calculated Pomd 

Acid (°C.) Cale. Found C H C H 

4»Carboxystilbene 248,1-248.4 224.S 226.6 80.33 5.39 80,07 S.29 

S-C arboxystilbene 197.0-197.5 224.3 22S.8 80,S3 5.39 78.83 5.38 

4-C arbOTtytolane 220.5-221.0 Z2Z,S 222.2 81.C« 4.54 80.80 4.71 

S-C ar boxyfcolan® 160 -161 223.S 22S.e 81.06 4.34 80,50 4.66 

®The neutralization equivalents were obtained potentiometrieally. 

^The analyses were supplied by Strauss and Weiler, Oxford, England. 
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fha prsparation of 3- 4«»oarbethoxystilb0n0 
II ulimiii will • itmi'iii'jijii mua i mii m' nwi ir i«ii ii»i n iimuii wnjt—im im «mii miikh m w .wn..!.] 

fhM 4-carT38tho3sy8fcllb@ae waa praparad by the procedure given by 

Puson and Cook©. It Involved the Mesrwein reaction using 4.—carbethoxy-

bensenediazoaium aostate. Th© product ims obtained la poor yields of 

about IS.7'^. It Eielted at 108.5-109.0®C, 

The proparation of S-carbethoxystilbaix© was not successful using the 

method described above. This compound was prepared by the Fischer 

esterifioation. Five and two-tenths grans of S-carboxystilbene was 

dissolved in 80 ml. absolute etlianol. One milliliter concentrated 

sulfuric acid was added and the solution was refluxed for seventy-two 

hours. The hot solution was then poured quickly into 900 ml, water, 

and tiae oily suspension extracted successively with 500 ml. and 200 ml. 

ether. The combined ethereal extracts were then washed with 5% sodium 

bicarbonate until the wash solution, on acidification, showed no solid 

acid. The combined weight of the recovered acid v/as 0.5 g. 

The ethereal solution was washed with %mter twice and then dried 

with teierite. The residue from the evaporation of the ether was a 

slightly oolored oil. The short path distillation of this oil gave a 

colorless liquid which solidiiled on cooling. fhe solid was recrystal-

lixec. from Skelly A twice. The melting point of the ester, ooispound I, 

ws 63.2-64.0°C. When the combined mother liquors were chilled in a 

dry-lc© acetone bath, a second crop of crystals, coE^ound II, was 

obtained. This confound, however, melted when, it warmed to room temp­

erature. Evaporation of the Skelly A solvent from the resulting mother 

liquor led to a third material, compound III. In appearance, it was a 
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yellow solid of no definite mslting point. It appears to be a mixture 

of th® first two eoi^ounds mentioned, and it probably represents a 

jaixtur® of'ois-trans isomers. fh© yield of the ester melting at 63°C. 

ms 2*0 g. 

The preparation of S» and ^oarbethosqrbolane 

The 5»0arbeth035yt0lan9 ms prepared by the Fischer esterifioation 

of the aoid. Five and six-tenths g. S-oarboxytolane was dissolved in 

75 ml# absolute ethanol and 2 ml. of oonoentrated sulfuric acid, and then 

refluxed for 76 hours* The subsequent treatment of the solution was the 

same as that for the dihydro ooij^ound. The combined weiglit of the re-

©OTored acid was 0»4 g. fh® emporation of the ether left a yellow 

colored oil. fhe microdistillation of this oil could not be effected 

satisfaotorily. At a pressure of 1.2 sm» and bath temperature of 230°C. 

the viscous liquid could not be distilled without flooding the Golvuan. 

A partial separation, however, was obtained into six fractions. The 

eorreoted refractive indices at 29®G. were as followsj 

Fraction YoIuim of Distillate Refractive Index 
—— (s:.T—— 

I O.S 1.6108 

11 0.3 

III 0.2 1.6122 

I¥ 0.4 

V 0.2 

?I 0.1 1.6125 
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Physical GoastaalsB of th© Itegaturated Esters 

Sapoaification Aatalysis (^)® 
Meltii^ Point Equimleat®^ Gale. Pound 

later (°C.) Calo. Found CI C H 

S-Garl)etto3cy8tilbene 6S.2- 64,0 252,3 253 80.92 6,39 81.29 6.14 

i-Carbethoacystilbsae 108.6-109.0 252.3 251 80.92 6,39 80,44 6.36 

S-Carbethoa^olane liquid^ 260,3 2SS^ 81,68 5,68 81.37 S,76 

S-C ar b©tiK>3Eytolaae liquid^ 250,3 — 81,68 5.63 81.41 5.63 

4^Carbetho3^olan0 83.S- 84,0 250.3 250 81,58 5.63 81.56 5.60 

^Fraction III 

^Fraction V 

®Fraction IV 

d 
Saponification eqiiiTalents determined as stated in a later seetion. 

®Carbon and hydrogen analyses determined by Strauss and Weiler, Oxford, England. 
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Subsequent studies on the saponification rat® of tha ester showed that 

fractions III and VI were the same oompouad. 

Th® esterification of 4.0 g. 4-oarboxytolan9 was carried out in 

75 lal. absolute ethanol and 1.8 ml. concentrated sulfuric acid. The 

solution was relluxed eighty hours. It was treated in a manner similar 

to the previous synthesis. The recovered tolanecarboxylic acid 

aMunted to 0»6 g. A light yellow solid was obtained from the ethereal 

solution after the solvent was evaporated. Recrystallization of the 

crude 4-oarbetho3^olane yielded S.O g. of ester melting at 8S.5-84.0°C. 

The physical constants of these esters are given in Table 10. 

The preparation of 3- and 4-i^droxymetIxylstilbene 

To 3.8 g« powdered lithium aluminum hydride suspended in 175 ml. 

absolute ether in a tiuree-neok round bottom flask attached with a 

Trubor® stirrer, condenser and graduated dropping funnel, was added drop-

wise a solution of 2.4 g, 4«carboxystilbene in 50 ml. absolute ether. 

The solution was added at a rate which maintained the refluxing of the 

ether. After the addition was eoE^lete the suspension was refluxod for 

an additional five hours. The flask wms then cooled in an ice bath and 

water added dropwise cautiously, through the dropping funnel. Yfhen the 

violent evolutions of gas were no longer evident 50 ml. of water was added. 

This was followed by 20 ml. of 10^ sulfuric acid added portionwise. The 

two layers were then transferred to a separatory funnel and shaken. The 

aqueous phase was extracted again with 50 ml. ether. The combined ether 

extracts were treated three times with 25 ml. 10^ sodium bicarboaaate and 

then twice with 25 ml. portions of water. The ethereal solution was 
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dried ovsrnight over Crisrite end filtered. The evaporation of the 

ether left 4'"h3rdroxyiaethylBtilbene which on two recrystalliaations from 

Skelly D melted at 170.0-170.5°G. Yield « 3.0 g. The sodium bicarbo­

nate extracts did not yield any acid on acidification with sulfuric aoid 

In a manner similar to the previous synthesis, 3.1 g. of 3-oarboxy-

stilben© was reacted with 4»0 g. lithiuia aluminum hydride. The evap­

oration of the ether solution to vacuo yielded a light yellow solid. 

TMs crude S-hydromethylatilbeno was recrystallized three times from 

SJcelly D. The colorless platelets melted at 97.8-98«8°C. Acidifi­

cation of the bicarbonate extracts gave no acia. The yield of the 

eater was 2.6 g» 

The preparation of S- and 4-hydro3<ymethyltolane 

The reduction of 4«carboxytolane (10,3 g.) with 5.0 g. lithium 

aluminun hydride was effected similarly to its stilbene analog. Three 

reoryatallizationa of the crude 4-hydroxymet]:^ltolane yielded colorless 

platelets melting at 125.8-126.S°C. Yield - 9.2 g. 

The 8»oarboxytolane was treated similarly. The reduction of 14.1 

Of acid with 4.0 g. lithium aluminum iiydride produced 10.1 g. of 3-

hydroxymetl^ltolane, which, recrystallised twice from Skelly 13, produced 

9.1 g. oolorleas platelets melting at 47.6-48.6®C. 
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Tha Determination of Apparent loniaation Constants 
of Substituted Benzoic Acids 

Sol^onts - ethanol and watar 

Stockroom grade absolute ©thanol ws used without further purifi-

oation. Carbon dioxide-free water, prepared by the usual boiling 

process, was used in all the solutions, 

Aqueows alooholio bioarboaate-free sodium hydroxide (0«1N) 

A ooBoeatrated aqueous solution of sodium hydroxide (1:1 by weight) 

urns filtered through a fine grade sintered glass crucible. The appro­

priate volume of this solution was dissolved in a medium consisting of 

75 volume-percent ethanol in water. 

Benzoic acids 

fhe sources and properties of the bensoic acids used are listed 

in fable 12. 

The titration 

The titration was perforaed with a Beokimna Model G pH meter. All 

acid solutions were prspared to the same laolar concentration by weighing 

out the required amount of aoid. This precaution was necessitated by the 

sensitivity of the pH meter and the ionization constants of the acids to 

the ionic strength of the solution. It was found that a ten percent 

difference in the aoid concentration (at 0.0079 M.) did not affect the pH 

appreciably at the midpoint of the titration. 

A weighed amount of acid was transferred quantitatively to a 100 ml. 

voluiaetric flask and washed down with a small amount of ethanol. Twenty-
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Sources sad Properties of Beasoie Asids 

Mol. Wt.® Melting Point (°C,)^ 
Aeid Cale • Found Literature Found Sooa^e® 

Benzoic 122.1 122 121.7 122.8-123.4 Merek purified 
Inisie 1S2.1 ISl 182-4 182.7-183.4 lastma wMte 
Toluie 136.1 137 179-80 179.1-179.4 Bastman white 
£-lroiaobensoie 201.0 200 261-3 252 - 253 Iftstis&n white 

^lodobeasioie E48.0 248 187-8 185 - 186 &istiMua white 
^Mitrobensoie 16?.1 167 140-1 139 - 140 Mathescm reagent 
£-1itrobenzoie 167.1 168 240-2 241 - 242 Uatheson reagent 
4-Carboxy atiIbene 224.3 222 248.0-248.4 fhis thesis 

3-CarboxystiIbene 224.3 222 194-6 197.0-197.5 fhis thesis 
4-C arboxytolane 223.3 221 220.5-221.0 This thesis 
3-Carboxytolane 223,3 220 ISO - 161 fhis thesis 

^h© iBoleoular -weight is based on. the titration eurves obtained poteatiometrically. 

^All melting points are uncorrected. Th^ were obtained from a Fisher hot stage block. 

®Eaeh acid was sublimed under vaouum before use. 
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five millilitsrs of water was pipetted into the flask and ethanol added 

to th® 3mrk» Th® solutions were allowed to equilibrate overnight, and 

the levels readjusted. The ooa^osition of the medium was dictated by the 

solubility of the most insoluble acid, 4-carboxystilbene. Th® maximum 

solubility of this acid at 25®C. is only 100 mg./lOO ml. in this medium. 

Fifty milliliters of the acid solution was pipetted into the 

titration cell* fhe cell was attached to the air-driven stirrer and 

electrode assembly. A five milliliter capacity microburette calibrated 

in 0.01 ml# units was then inserted through the stopper. The oontents 

of the cell were, in this way, exposed to a minimum amount of atmosphere. 

The whole assembly was imnersed in a thermostated bath maintained at 

26.3 ± 0.01°C. and the potentiometrio titrations were carried out within 

one-half hour. The electrodes were immersed before and after each run 

in a buffer solution. In all cases, the pH meter maintained a steady 

balance throughout the titration. Particular attention was paid to the 

buffered region and the end-point during the titration. In all oases 

the end-point ims ascertained to within 0»07%, Moreover, the pH 

readings should be acceptable to 0.02 pH unit. 

The titration curves were plotted for each acid. In each case 

values of the pH were plotted against the corresponding burette readings. 

The end-points were determined by n^ans of the familiar differential 

method. The apparent pK^^'s of the various acids were obtained with the 
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Table 13 

Apparent pK's of Substituted Benzoic Acids 

Yolunsa of -pKa 
Acid 0.1043 S. MaOH l/s l/2 2/3 Average pKa 

£-M0tiio::^b0azoio 3, •785 7. .06 7, .02 6. .97 -7, .02 
£-Broinob«azoio 2, .673 6. .25 6. .23 6. .22 -6. .24 
ffl-Iitrobenzoie 3. .856 5. .50 5, .48 5. .46 -5. .48 
£-liet hylbeaz 0 io 3. .671 6, .86 6, .83 6. .80 -6. .83 

m-Iodobenzoio 3, .750 6, .11 6, .06 6, .09 -6, .09 
£-1 itrobemoio 
Benzoic 

3, .760 5, .28 5, .28 5. .30 -5, .29 £-1 itrobemoio 
Benzoic 3. .810 6, .50 6, .57 6, .62 —6. .57 
3-C arboxytolan© 3, .728 6, .41 6, .35 6, .32 -6, .36 

S-C&rboxystilben© 3, .719 6, .56 6, .52 6, .51 -6, .53 
4-C arboxyst1Iben® 2, .340 6, .70 6, .69 6, .67 —61 .69 
4-Carboxytolan.© 3, .689 6. .36 6, .31 6. .29 -6, .39 

fable 14 

Variation of pK^^ with Constitution of Medium 

¥ol. H2O/IOO nd. ¥01. base used 

Solution. (ml.) ii^parent pK^ 

25 2,200 -6,60 

26 3.970 -6.59 

SO 3.592 -5.69 

65 S.975 -5.16 
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aid of th® Henderson ©qimtion^^®: 

[(salt) + (H'^)] „ 
pH » + log " - A(u)® + Gu 

[(acid) - (H"^)l 

where A is a constant. C is a function of the particular anion and u 

is th© ionio strength. The first approxinaition for dilute solutions, 

suoh as wer® used in these titrations, is to make C a constant for all 

th© acids. l\irth©rffior@, the low ionic strength oi' the solutions may 

justify elimination of activity coefficient terras altogether. The 

hydrogen ion terras (H"*") aay he dropped altogether in comparison with the 

salt and undiesociated acid eoaoentrations for acids tvlth pK's approx-

iaately equal to 10"® in water. Thus 

pH » pK^ + log (salt)/(acid) . 

That these approximations are valid is apparent from the values listed 

in Table 13. Here the pK^ values were obtained from the titration 

curves at one-third, one^half and two-thirds neutralization. 

Under slightly different experijueatal conditions, the pKg^'s were 

determined as a fmction of mter concentration and aoid oonoentration in 

the case of benzoic acid only. The results are shown in Table 14. 

113 
S. Glasstone, '^Introduction to Bleotrochemistry'*, D. ¥an Nostrand 
Co., Mew York. I.Y., 1940, 
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im-stjryl 

m-penyl-
acetylenVl 

£-NOg' 

cc.5 6,0 6.5 
pH 

7.0 7.5 

'apparent 

Pigux'e la 

Potentlometric Titrations of Benzoic Acids 
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5.5 6.0 6.5 7.0 7.5 

P-^apparent 

PigTjpe lb 

Potentiometrlc Titration of Benzoic Acids 
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p-styryl 

Pjl^henyl a c e t yl enyl 

5.5 6.0 5.5 7.0 7.5 

P^apparent 

Pigtire Ic 

Potentionietric Titration of Benzoic Acids 
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The Ester Saponifications 

Aoetoa® 

Stookroom grade aeeton® wag treated iwith potasBium permanganate 

(l g. per liter) and Drierite (10 g. per liter) for two days at room 

temperature. the liquid was filtered and then distilled through a five-

foot helix packed, Yaeuum jacketed still. A two hundred milliliter 

forerun was rejected. fmo and a half liters boiling at 56.1°C, was 

oolleoted. 

Bioarbonate-free sodium hydroxide 

A concentrated solution of sodiua hydroxide in water {b7% by weight 

•water) was filtered through a fine grade sintered glass crucible. Five 

and slx»tenths milliliters of this solution was added to two liters of 

carbon dioxide-free water in a paraffin-lined bottle protected with an 

Asoarit® tube. The normality of this solution did not change through­

out the experiments (two weeks). This solution was used to make up 

solutions for conducting the saponification rates. 

A more dilute solution of sodium hyciroxide than the one above was 

mad® by dissolTing 1.1 ml. of a filtered solution of sodium hydroxide 

(50^ by weight water) in two liters of COg-free water. This solution 

was used for titrating aliquots. 

Hydrochloric acid solution 

Stookroom grade C.P, hydrochloric acid (7.6 ml.) was dissolved in 

two liters of distilled water and allowed to staiid two days before 

standardizing. 
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Potassium aoid phthalate 

Baker and Adamson G.P, minimiUB assay 99.9^ potassium aoid phthalate 

was drisd in an oven for twenty-four hours at 110°C. It was stored in 

a desicoator arid used for all subsequent standardizations. 

Indicator 

Grosol red solution was made by triturating 0.04 g. oresol red with 

0.7 ml. 0.16 N. sodium hydroxide and 10 ial. water. The resulting solution 

was diluted to 100 ml. in a volumetric flask. Five drops of this indi­

cator were used in all the titrations. 

Esters 

Ithyl benzoate w&a Eastman Kodak white label material. "'wo hundred 

milliliters of the ester was distilled through a short path still. A 

fifty milliliter forerun was discarded. Material boiling at 99.0-

100.0®C. at 20.0 mm. pressure was collected. The total volume of 

collected material was 50 ml. 

Ethyl ̂ broffiobenzoat® was prepared* by the Fischer esterification of 

ffl-broHiobenEoic acid, and distilled through a Claisf^n heed- The ester 

was purified by distilling through a semiraicro-Vigreux column. A 10 ml. 

forerun was rejectedj material boiling at 100-100.5®C, at 7rm. was 

collected. 

The stilbeae ana tolane esters prepared previously were used without 

further purification. 

* 
Courtesy of Mr. F. Borduin of this Laboratory. 
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The aaponifioation rates of the esters 

Th® procedure used here is essentially that of Hinshelwood and 

114 
ToifflJiila . One hundred railliliters of approximately 0.04 N, sodium 

hydroxide was pipetted into a 250 ral, volumetric flask. Acetone was 

added to th® mark with swirling and the solution allowed to equilibrate 

overnight. Th® volume was adjusted with acetone and the flask put into 

a constant temperature hath maintained at 25.3°C, The ester was weighed 

carefully into a 260 ml, standard taper round bottom flask attached with 

a female ̂ Trubore'* assembly. One hundred milliliters of stock sodium 

hydroxide solution was then quickly pipetted into the flask, the flask 

corked and then imaersed in the bath. Four runs were made simultaneously. 

Eight points were taken and recorded in the usual manner. 

A 10 ml. aliquot was pipetted out of the flask at the designated time« 

quenched with S ml. hydrochloric acid and then back-titrated with 0.01 N. 

HaOH. In the case of th® imsaturated esters it was found necessary to 

add a slight amount of aoetoae to the quenched solution in order to effect 

solution of th® preoipitated acid and/or ester. 

An infinite-tiJW titer was obtained by transferring the flask, after 

the '*Trubore'* attachment was replaced by a standard taper stopper suitably 

tied down, to a bath maintained at 55°C. Twelve hours was sufficient 

to hydrolyze the esters con|)letely. The stock solutions were titrated 

before and after each run in order to be sure that no change in titer 

occurred. 

Tommila and G, Hinshelwood, J. Ghem. Soc., 1801 (1938). 
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fh@ alkaline solutions were titrated before and after each run with 

standard solutions ol potassium acid phthalate. The hydrochloric acid 

solution ms in turn standardized with the sodium hydroxide solutions. 

All titrations were reproducible to within O.lju. The volumetric glass-

war® used in the experiments ware within the limits of acceptable 

tolerance (0.1^). Saponification equilavexits were found in the usual 

manner. The rate constants for the saponification of esters are listed 

in Table 15. 

The second order rate constants were obtained from the integrated 

aquation, 

b - xg ^2 1 
kg(t2 - - In 

a - b b - Xj^ a - X]^. 

where b and a are the initial concentrations of ester and sodium 

hydroxide, respectively. th® subscripts 1 and 2 refer to two different 

points. In this manner* the rate constants ware obtained between two 

successive points. A representative experiment is given in Table 16. 
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Table 15 

Rat® Constants for Saponification of the Esters 

Mol. Wt. Infinite 1°% 

Ester Calo. Found Titer 0t) (litars/mole-sec.) 

Ethyl beazoat© 150.2 100 31.2 
100 30.6 
100 31.8 
100 32.6 

Ave. 31.8 + 0.6 

Ethyl ffi-bromo- 229.0 100 192 
benaoat© 100 192 

Ave. 192 • 0 

Ith^l S-earbethoay- 252.3 253 91.7 34.6 
stilben© 97.2 37.0 

100 34.1 
101® 40.2 

Ave. 35.2 + 1.1 

Ethyl 4-carb®thoxy- 252.S 251 106 24.2 
stilbene 103 27.1 

100 27.0 

Eti^l S-oarbethoxy- 250,3 255^ 99.4® 80.2 
tolan© 98.4^ 80.7 

Ave. 80.4 + 0.3 

Itl^l 4-carb0tho3^-
tolan© 250.3 250 97.6 107.8 

97.5 106.8 
Ave. 107.3 0.5 

®'GQii^ouad III 

^Fraotioa I? 

^Fraction Y 

^Fraction II 
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Table 16 

Sapoaificatlon Eat® of Sthyl Benzoate at 25.3"G Or-b 

ifeOH Titer (ml.)®' 

( 0 , 0 1 2 8 0  B . )  
fim® 

(inin.) 

(b-xg) ^ (a-xp) 
log ~ log " ' " **" 

(b-Xj^) (a-Xj^) 

X 10^ 

2.04 

2,22 00.0 

4.03 41.7 5.76 

4.53 77.7 5.25 

g.05 110.9 5.22 

5.84 182.0 5.43 

6.62 282.5 5.32 

7.6S 471.4 5.22 

10.03 infiait® 
Av©» & *2^ 

®'Initial bas® titer - 2,04 mlj 
Final base titer - 10.03 mlj 
Five milliliters 0.0383 I. HGl added to eaoh aliquot; 
Initial oonoentration of ester - 1.022 meq. per 100 ml; 
Initial oono«ntratioii of HaOH • 1.639 meq. per 100 aO.. 

• 32.6 X lO"^ liters/mole-sec. 
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The Solvolysis of Substituted Benayl Tosylatos 

Aeetone 

Stockroom grade acetone was dried over Drierite for two days and then 

distilled through a packed five-foot vacuum-jacketed column. Boiling 

point, S5»0°C. 

Lithium perohiorate 

Lithium perohlorate (LiClO^.SHgO - O.F. Smith Co.) was dehydrated 

in vacuo for ten hours at 145°C. An aqueous lithium perohlorate 

solution was mad® up in a one-liter volumetric flask to 0.479 M. by 

dissolving 51,0 g. of th® anhydrous salt. 

Potassium nitrate 

Potassium nitrate (ESOg - Baker and Adamson, reagent grade) was used 

without further purification. 

£-Tolu0nesulfonyl chloride 

£-Toluen9sulfonyl chloride (Eastman Kodak, reagent grade) was re­

distilled in vacuo. Boiling point, 124-125®C. at 7-8 mm. Melting 

point, 69.6-70.50C. 

Triethylamine 

Triethylamia© (Eastman Kodak, reagent grade) was refluxed over sodium 

shavings for one-half hour and then distilled through the helix packed 

column. From a 100 ml. saii|)ie, a 25 ml, forerun was separated. Thirty 

milliliters boiling at 88.0°C., was collected. 
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Indicator 

A O.lft solution of broin cresol green (llarleoo) and 0,2% solution of 

methyl r®d (Harleco) were prepared in acetone as solvent. A slight 

amount of -mter (1^ by -yolum©) was necessary to dissolve the methyl r«d 

indicator. Thes® two solutions wer® mixed in equal volumes before usa. 

M^t drops of ths mixed indicator was added to each run. 

i^droohlorie aeid 

A standard aqueous hydrochloric acid solution, approxinmtely 0.02 K,, 

was mad© up in the usual manner. Its concentration was checked period­

ically by titration with eodiuta hydroxid® standardized with potassium 

asid phthalat®. 

The benzyl alcohols 

Benzyl alcohol (laatman Kodak, chlorine-free) was redistilled in 

vacuo« Boiling point, 86,8-88.0°C. at 7 nan. 

£-Iitrob®nzyl alcohol was prepared by hydrolysis of £-nitrobenzyl 

chloride according to th© method of .Soderbaus and Widman^^®. Yield - 37?i». 

^BreHaobenzyl alcohol was obtained by the lithium aluminum hydride 

reduction of w-brewiobenzoi® acid. Boiling point, 255-257°C. at 738 ram. 

Yield - 7e^. 

£-Methoxybaazyl alcohol was also obtained by the lithium aluminum 

hydride reduction of £-inethoxybeni;aldehyd0. Boiling point, 106°u. at 

22 mm. Yield - 40f<.. 

Soderbaum and lidman, Ber., 25, 3290 (1892). 
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£«-Methylb©azyl alcohol was obtained from £-ni0thylbenzoic acid via 

the lithium aluminum hydride reduction. The oil on recrystallization 

from water yielded fine white crystals melting at 61.0-62.1°C. Yield -

8^. In a previous attempt to prepare this coD5>ound, £-methylbenzaldehyde 

(l&i.th©son, reagent grade) was reduced with lithium aluminum hydride. 

The oil resulting from this synthesis did not crystallize after repeated 

freezingjs. It showed a wide range in melting from -IS to -4°C., although 

the liquid distilled at a constant teffiperature of 216-217°C, at 721 mm. 

Derivatization of the parent aldehyde with £-nitrophenylhydrazine and 

oxidation of the aldehyde to the corresponding ̂ -methylbenzoic acid 

indicated that the aldehyde was a mixture of the ortho and para oonpounds. 

^Methylbenzyl alcohol was prepared by the reduction of m-methyl-

benzoic aeid. Soiling point, 217.6-219.at 743 rm. Yield - 785^. 

m-Mothoxybenzyl alcohol was obtained from the lithium aluminum 

hydride reduction of the corresponding acid. Boiling point, 243-244°C. 

at 734 mm. Yield - 7^«. 

The unsaturated aleohoIs 

The unsaturated alcohols, 3- and 4-hydroxymethylstiibene and 5- and 

4-h3rdroraeti]yltolane were used as such. 

Preparation of substituted benzyl tosylates - general procedures 

Method Ai Benzyl tosylate. To 10 mi. (0.0966 moles) benzyl 

alcohol, dissolved in 100 ml. of anhydrous ether, was added 2.4 g. (O.IO 

*Work performed by Dr. G. Hammond. 
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moles) of sodium hydride. The mixture was stirred and refluxad for 

twelve hours. The us® of 6 mm. glass beads in conjunction with a paddle-

typ® itifrer was found to be helpful in crushing the sodivm hydride ̂  situ. 

Th® suspension of th® sodium alcoholate was cooled to -20°G. with a dry 

ice bath and a solution of 19.5 g. (0.0974 inolss) of £-toluenesulfonyl 

ohlorid® in 100 sal, of anhydrous ether was than added dropwise to the 

suspension. In all operations caution was taken to exclude moist air 

froBi th® solutions# After the tosyl chloride solution was added, the 

reaction mixtixr® was stirred for two hours at -10°C, and then at room 

tei^erature for one additional hour. The suspension was then repeat­

edly iiltered with a Hiiniinujn exposure to air until a clear solution was 

obtained# It was found helpful to use a niedium grade sintered glass 

funnel for tha last filtration. Ihen the clear eiiiereal solution was 

cooled in a dry ic® bath, a copious precipitate of fine white needles was 

obtained. The crystals were quickly filtered and recrystallized several 

times from dry Skally B. Yield - 20 g. (80^). The amount of tosylate 

isolated depends greatly on th© anhydrous nature of the reagents used 

and the ©xtent oi their -axposur® to the air. Pure benzyl tosylate 

under Skelly B has been kept in a tightly corked flask in a refrigerator 

for periods of over three months without apparent decomposition. 

£-H©thosybenayltosyiate. Th® reactivity of ̂ -methoxybenzyl tosylate 

is much greater timn that of the unsubstituted compound. The preparation 

of this particular compound required extremely anhydrous conditions and 

facile manipulation. The sodio salt of the alcohol was prepared in th© 

usual manner, caution being takaa to exclude all possibilities of moist 

air entering the reaction. An anhydrous solution of tosyl chloride was 
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added to the salt suspansion maintaiaad at -70°C. within five minutes. 

Th@ reaction was then allowed to rise to -30°C, in one-half hour. A 

siphon arrangament was quickly attached to the system, and a vacuum 

applied at th© lower and. The filtration was carried out through a 

pressure filter into a filter flask maintained at -70°C, in a dry io© 

bath. It was necessary to execute this process in a xm rainutes. 

After sQveral minutes the £-Eiethoxybenzyl tosylate began to crystallize 

as fin® white needles. Subsequent rates of solvolysis of this confound 

were made directly with the crude material. Its isolation involved 

filtration in the absence of moist air on a sintered glass plate and 

rapid removal to the solvolysis cell. The polymarization of the g-

methoxybenzyl tosylate proceeds even at -70°C; the rate of the process, 

however, depends greatly on tii© extent of its exposure to moisture. It 

has kept at this tenperature for a period of one hour without noticeable 

degeneration. Frevlous attenpts to recrystallize the material in a 

variety of solvents wara futile. Even attempts to procure melting points 

were unsuccessful. In every case the fine crystals polymerized into a 

redmass after a few minutes in its new environment. 

Method B; |N-Iitrobenzyl tosylate. Method A was found to be not 

applicable to £-nitrobenzyl tosylate. This compound was made by the 

method of Tipson^^®. B'ive grams tosyl chloride was dissolved in dry 

pyridine (25 ml») and cooled to -10°C, To this solution was added 317 g. 

£-nitrobenzyl alcohol ana the temperature maintained. After, twenty 

Tipson, J_» Org. Chem., _9, 259 (1944). 
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minutes fins crystals began to appear; tan minutes later 60 ml. 5 S. 

sulfuric acid at -10°G. was added. Th© temperature rose to 26®C. and an 

amorphous yellow solid separated. The mixture was cooled to 5°C. and 

filtered. Th® hard crystals were washed three times with 50 ml. portions 

of Skelly D. The oriide tosylata was recrystallizeid five times from 

Skelly D, yielding finally white leaflets melting at 103-104®C. 

With the exception of £-nitrobea«yl tosylate all the alcohols were 

treated by Method A. The variations in experimental conditions for the 

•mrious alcohols wsres length of heating the alcohol with sodium hydride, 

temperature and length of time in which the alkoxide was mixed with tosyl 

chloride, and th® temperature and length of time in which the two were 

stirred. For convenience these experimental conditions are listed in 

tabular form in Table 17. 

Every tosylate, with the exception of £_-methoxyben2yl tosylate and 

4»hydroxym0thylBtilben0, was recrystallized from Skelly I). It v,'as found 

that the temperature of th® recrystallizing solTent should never be above 

60®C. Higher temperature led to the rapid polymerization of most of 

th® tosylates, especially the more reactive ones. The tosylate of 4-

hydroxymethylstilbene was always contaminated with the alcohol and could 

only be isolated 86;^ pure. The partial purification procedure for this 

compound consisted of dissolving the solid obtained from the chilled ether 

solution (-70®C.) in anhydrous benzene (approximately 5 ml. benzene for 

2 g. crude solid). The solution was filtered to remove the unreacted 

alcohol. The clear benzene solution was then evaporated under vacuum, 

without heating. The residual solid was then washed with Skelly D twice 
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and used such. fhe sole coataoiinant of the tosylate was the aloohol. 

fhis was d0t®riaia®d hy hydrolyzing the tosylat® in a medium oonsieting of 

50 Tolume-peroeat aqueous aoetone. The solution, was then titrated with 

standard has© to assay the tosylate. The acetone was evaporated, and the 

resulting aqueous mixtta*® treated with ether. The ether solution was 

•washed with water and the ether remoTed to vaouo* A melting point of 

the residual solid was taken and in all oases, despite the assay of the 

tosylate (which was sometimes as low as 35/1), the residue melted within a 

few degrees of i-hydromethylatilbeae. Its melting point was not de­

pressed hy mixtiir© with the authentic aloohol, indicating that it was 

fairly pur® 4-hydroxyiaethylgtilbene. 

Ih® identity of g-methoxybenzyl tosylate was confirmed in a similar 

saaanner. Although the assay was useless (because of the presence of 

tosyl chloride) the material obtained from the ether solution was sub­

jected to an infra-red analysis. The spectrum of this material was 

identical in all respects with that of an authentic san^le of £«methoxy-

bensyl alcohol. 

The yields from the various preparations of the substituted bensyl 

tosylates are tabulated in Table 18. The solvolysis equivalents were 

determined by hydroyslng a weighed amount of tosylate in a meditjm of 

80 volume percent acetone in water. the liberated acid was titrated 

with standard hydroohlorio acid solution. The quantitative sulfur 

analyses were made on a seaimicro scale (100 mg. sao^)!®) with a Parr 
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Prepara-feioa of Substitutefl Bmnzjl Tosylates 

Eesctioaa TsCl 
Tim Saactioa With Alkoxide 
With Sal Mix Stir m* Alcohol 

Jbleohol (hours) T«i^. fiia® Teap, T im (h r . )  (g.) 

Bea^l aleohol 12 -30 0,5 -10 2 10.5 

£-BroEiob«aayl aleohol 36 0 0,6 10 3 7.6 

®-Bro^b«rixyl alcohol 16 -30 1 26 3.4 9.4 

£-Metl)ylb©n3Eyl alcohol 12 -30 0.5 -20 2 4.1 

m-Methylbenayl aleohol 17 .30 O.g 00 2 4.1 

£«Methoxyb©n2yl alcohol 8 -70 0,2 -30 0.5 6.7 

i^Mstho3cyb©ngyl aleohol 10 -20 1 15 2,5 4.4 

4-%droxymet%l8tilbeno 60 -60 1 15 2 1.8 

S-%droxyjn0ttyl stilbene 36 -30 2 25 3 2.1 

4-%droa5^t]:^ltolane 38 -30 1 20 3 1.7 

3-%droxyi59ti^ltolan© 26 -30 1 30 S 2.1 
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Table 18 

Physieal Constants of Substituted Bongyl fosylates 

fosylate Mol, It. Yield M.P!-

Sulfur 
Analysis 

Calo. Found S.E^ 

Beasyl 262.3 8{^ 58.5- 58.8 — 262 

£-1itrobsaayl 307. S 70^ lOS. 0-^105.6 10.39 10.43 308 

£«Brofflob®nayl 341.2 5^ 76.8- 77.6 9.40 9.41 340 

ffl-Broffiobeneyl 341.2 615% 105.2-105.6 9.40 9.40 341 

£»l0tho3cybensyl 292.4 mim — 

B^MetlKKsybangyl 292.4 56^ 83.7- 84.0 10.97 11.07 293 

g»Me-bhylb«nEyl 276.5 41^ 57.9- 58.5 .. 276 

»•( -Styryl)-
"" b®Myl 364.5 44^ 104.0-104.2 8.80 8.67 362 

£.( -Styryl)-
beaayl 364.g 3C3^ 150 tmmm <•»«• mum 

»• (Phenyl-
aeetyloayl)-
benayl S64.4 67% 79.0- 79.5 8.85 9.45 358 

£"{Ph©Hyl«« 
ao®tyl®nyl)-
benzyl . 362.4 115.2-115.9 8.85 9.38 362 

^•Melting points are uaoorreoted. 

SolTOlyaia ©quivalaat. 
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117 
bomb • The precipitated bariim sulfat® ims filtered and weighed on a 

fin® grade sintered glass crucible. All ttetenninationu were made in 

duplieat® and the listed values represent the average sulfur contents* 

fhe kinetioa of the tosylate solvolysis 

Tha rate of solvolysis was investigated using tha rapid intermittent 

titration method̂ ®̂, The arrangsHient was modified slightly by the 

insertion of a glass and a calomel electrode into the cell to supplement 

the visual indicator. Preliminary eoBEparison studies with visual 

indicators showed that the response of th® glass electrode was sufficiently 

sensitive in the medium to measure pi changes of the order of one unit per 

second. fhe advantages of the glass electrode over the visual indicator 

for detecting end-points li© in its eonvenience and in the freedom from 

personal factors. fhe pH change caused by dilution diuring the run, can 

be ffliniiiiiaed by adjusting the ratio of the titrant to the solvolysis 

solution to a minimum. In most oases th® total volume of the titrant 

added was approximately 4 ©1. This represents a dilution of four percent 

at the end of the run. 

The following procedure was used# A weighed amount of tosylate (0.6-

1.0 meq.) was transferred to the reaction cell and washed down with 50 ml. 

(pipet) of anhydrous aoetone. The cell was fitted with the electrodes, 

thermometer, burette and stirrer, than equilibrated in a constant teii5>er-

ature bath maintained at 25® + 0»0S°C. In the meantime 40 ml. of 

^̂ '''parr Instrumental Manual So. lEl, Parr Instrument Co., Moline, 111. 

Bartlett aad C. Smin, £. iai. Chem. Soc., 71, 1406 (1949). 
1. Peters and S. Walker, BTodiem. l?7~'260"Tl923). 
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0»478 M* lithium perchlorate was pipetted into a modified fast delivery 

separatory funa®! equipped with a thermometer. This cylinder was 

iuanersed in an io® bath until the teaijerature of the solution cooled to 

13®C., a value which had been calculated to give no ten̂ jerature rise due 

to heat of solution when tho salt solution was added to the acetone 

solution. The delivery from the cylinder was reproducible to within 

0.03 bqI. The addition of the lithium perchlorate solution was followed 

by th© addition of eight drops of the indicator solution. The titrant 

consisted of a solution of triethylandne in the solvolysis medium, 56.6̂  

aqueous aoeton®. The base maintained its strength for several day* after 

standardization with aqueous hydrochloric acia to the indicator end-point* 

the remainder of the procedure is similar to the method of Bartlett and 

S<im.in« except for th® use of the potentiometric determination of the end-

point $. 

Since the mjority of th® tosylates could not be kept for prolonged 

periods {a few days), it was nsoessary to prepare and identify the com­

pounds immediately before use. In order to maintain reproducible 

experifflental conditions, benzyl tosylate was used as a control standard. 

It was solvolyxed at various times to be sure that the conditions were 

the same in all oases. 

The uniiaolecular rate constants were obtained from the integrated 

form of th® rat© equations 

€l> *• 3C"j 
k3,(tg - tĵ ) • In i . 

a - Xg 

A typical run is shown in table 19. In Table 20 are listed the I'ates of 
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Table 19 

fh® Solvolysis of Benzyl Tosylat® in 76.6 Mole Percent Water 
in isetone at 2g.3°C. and Constant Ionic Strength 

¥ol« fitrant Added®" 

(ml.) 

Time Increment 

(sec.) 

lÔ k̂  

(secT̂ ) 

1.066 113.5 102.1 

1.27g 161 105.9 

1.480 163 106.6 

1.70§ 184 108.2 

1.896 165 106.9 

2.094 179 106.6 

2.306 198 107.7 

2.609 198 108.8 

2.704 200 109.7 

2.904 216 108.8 

3.119 241 111.2 

3.501 222 108.1 

Average - 108.4 

height soX'voX]y2@̂  *"* 
formality of triethylamin© solution • 0.1351. 
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Table EC 

SolTolysss of Substituted Benzyl Tosylates 

fosylat® 
It. Used 
(mg.) 

k X 10® 
(secT^) 

Eeaction 
followed 

ff/ 

Total 
Reaction 

g->litrob@as5yl 162.0 .224 57 95.6 g->litrob@as5yl 
174.6 .245 75 97.7 

i^Broifio'benayl 174.8 .880 52 101 
170.7 .880 67 99.8 
215.4 .883 77 100 

£»Brofflob®a8yl 201.1 4.30 96 100 £»Brofflob®a8yl 
506.S 4.40 97 100 

^Methojiybenzyl 29S.1 6»S0 63 100 
220.0 6.48 67 99,7 
307.6 6.60 81 97.1 

Bemyl 144.2 11.0 66 100 
SOS .7 10.7 70 100 
315.8 10.3 99 99.1 

®-M®thyll»«n,zyl 273.9 18.7 91 98.4 
510.0 18.7 84 101 

£-M©thy Ibea zy 1 266.6 318 97 98.6 £-M©thy Ibea zy 1 
S77.7 320 98 99.8 

 ̂•Styrylbenayl 113.2 5.33 81 97.8 
107.7 5.37 79 98.9 
108.1 5.38 83 97,2 

£- -Styrylbeazyl 54.4 75.3® 98 31.2 
112.9 74.S» B1 85.1 
89.9 74.2® 49 63.0 
32.0 71.4® 92 91.3 

®Taltt@s for rat© eonjstants ar® determined in 44.8 mole percent 
aqueous aaetone solutions. 
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Ta"bl0 20 (ooatinuad) 

E®action Total 
It. Usod k X 10 Followed Reaction 

Tosylat© (mg#) (s@ot1) % % 

Hj»Ph.enyl« 
acs-tylsrQrlbeHzyl 96.2 

102.0 
119.1 

g-Ph®nyl-
acetylsnylbeaayl 84#5 

108.2 
84.0 
100.4 

M̂etiioaeybensyl 

1,66 55 97.3 
1.56 71 98.3 
1.46 75 96.9 

15.1 95 99.6 
14.7 92 98.4 
14.1 48 96.5 
14.6 88 95.0 

480'' 
450̂  

N̂ alu0s of th® rat© constant are deterndned in 13.5 mole percent 
aqueous acetone. 

the solTolyses of the benzyl to«ylat©s. 

Bates of solvolysis of the veiy reaotlTe tosylates in the bulk 

medium (76.6 bioI® percent water ia acetone) were auoh too rapid to 

loeasure. In order to measure th® rates of these confounds there were 

two feasible alternatives which oould be followed. These two alter­

natives arei 

(i) The solvolysis could be carried out at lower teû jeratures. 

(ii) The rates could be measured in media of lower water concen­

tration. The latter recourse was chosen. 

fhe rates of solvolysis of benayl and £-methylbenzyl tosylates ware 

obtained as a fuaction of the water oonoentration of the solvolyzing 
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medium as follows? 

To th® weighed amount or tosylate dissolved in 50 ml. acetone was 

added an aliquot of lithium perchiorate solution at th© prescribed time in 

th© usual soomer* The aqueous lithium perohlorate solution was calcu­

lated to be of such a concentration that when it was added to the acetone 

solution, the ioaie strength of the resulting solution would be the same 

as that in the previous runs. An illustrative exanpl® is shown in 

Table El for a 10 ml, aliquot. 

The data were recorded in the usual manner. Ihen the desired 

nmiber of points (5 or 8) had been recorded, another aliquot of aqueous 

solution of lower lithius! perchlorate concentration, was added and 

several additional points obtained, This procedure was repeated until 

the desired final water eonoentration had been attained. In this manner, 

a series of rate constants oould be obtained from one run. A typical 

series of such a run is shown in Table 22. 

fhe solvolysis of th® benayl tosylates was foimd to be neither acid 

nor base catalyzed. TMs was determined by alternately allowing the 

solvolysis to proceed in basic and acidic solutions. In all oases, no 

correlation between th® rate constant aiid presence of either acid or base 

oould be found, 

"i'h© rates of solvolysis of the reactive tosylates as a function of 

the water concentration of the solvolyEing in©dii«n are listed in Table 23. 

fhese tosylates included benzyl, £-Biethyl, £- -styrylbenzyl, £-»phenyl-

aoetylenylbenzyl and ̂ -Btethoxylbenayl tosylates. In the case of 

£*methoxyben2yltosylate the rate constant ims obtained in only on® medium 
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fabl® 21 

Adjustments of Ionic Strengths 

¥O1UB® 
Aoetoa® 
(BO.#) 

Yolnm 
Salt Sols, 
(al.) 

Total Vol. 
Solutioa 
(®1.) 

I'otal Aarb. 
Salt 
immq*) 

Molarity 
Salt So In. 

(meq./liter) 

m 10 58.6 10.44 1.04 
60 16 63.0 11.24 0.16 
60 20 67.6 12.08 0.16 
SO 2b 72.2 12.90 0.17 

BO 30 76.9 13.74 0.16 
m ®5, 81.7 14.82 0.16 
m. 40 36.6 16.6 0.16 

fabl® 22 

Th® SolTolysls of £-M©tbylfe©nEyl Tosylat® in Aqusous Acetone Media of 
farious fiater Conoentratioas at gB,5®0. and Goaatant Ionic Strength 

Tiiae ¥ol, LiClÔ  Molarity 
?ol. Titraat® lacrewiat Sola. Added LICIO4 Soln. k X 10 

A<i<S@d («©«•) (»1*) (M.) (eeoT̂ ) 

0,549 42 10.00 1.04 9.17 
0.6&0 41.S 9.21 
0.749 42 8.98 
0.86S 44.4 9.02 
o.seo 42.0 8.96 

îfopfflality of basic titraat » 0.1667. 

"̂ Weight of sasipl© solTolyzed "• 818»8 ag» 
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fabl® 22 (continued) 

Vol. 
AM®D 

nm 
lner«@nt 
(sec.) 

Vol. UCIÔ  
Soln. 

(«1.) 

Molarity 
LICIOa SoIn. 

(M.) (aeoT̂ )̂  

1.07S • 62.0 9.26 
1.149 so.o 10.03 
1.201 28.0 9.10 
1.607 11S.4 9.52 

I.M 23.6 5.00 0.16 28.9 
1.880 17.6 26.4 
2.016 22.5 25.7 
2.140 21.2 25.5 
£.276 24,3 24.4 

2.378 18.0 25.4 
2.SOS 22.8 24.6 
2.604 20.3 22.8 
2.72S 19.2 28.6 
E.8M 2&.1 24.3 

,S.736 86 5.00 0.16 50.7 
4.441® 55.3 
4.594 19.4 52.5 
4.716 IS.9 51.2 
4.987 30.S 53,3 

Isfill bur®tt« 

0.540 40.4 54.7 
0.800 31.8 53.6 
0.913 14.9 51.1 
1.059 19.2 52.4 
1.224 21.9 53.2 

1.789 64 e.oo 0.16 78.6 
2.019 19.0 97.5 
2.203 15.8 97.5 
2.SS9 12.2 96.3 
2.487 1S.6 96.8 

2.770 26.1 100.8 
3,G86 
4.001 S6.8 6.00 0.16 140.0 
4.264 21.8 158.3 
4.480 EL.O 160.1 
4.6S6 10.6 157.7 
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Table 23 

Rat® Ooastaats for th® Solvolyses of Soa© Substituted Benzyl Tosylates 
as a Puaotion of Water Concentration 

k, x 10̂  (ssotI) 
Kol® Pereent®' £-Ph©nyl-

Water -̂Methyl- £•• -Styryl- aoetylenyl- £-Metho3qr 
% Benayl bansyl benzyl benzyl benzyl 

1S.& mw — 465 

29.0 0.103 1.98 — — 

44.8 0.415 9.40 74.7 m — — 

55.0 l.Ĉ  26.1 189 — Mi 

ea.o 1.9S 54.1 356 2.38 — 

67.0 5.05 98.2 — — 

71.1 4.81 164 — 6.66 — 

74.1 7,50 2S0 - 10.1 «M«W 

76.6 10.7 319 14.7 mum 

®Ali runs were made at 2B.S°C. aii<3 oonsteint ionic strength 
(1.85 M. UOIÔ ), 

(13.5 mol® percent water in acetone or 2.0 ml. water per 50 ml. acetone). 

Even in. this oiediiua the rat® was much too fast to be I'oliowad by one 

operator. Th« ooor<iiaat©4 efforts of several persons ̂ fere required. 

*Iii0 generous help by &r, G. iiaaaHond and 14r. G. Luoas in this and 
other rapid runs is acknowledged. 
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Sine® ths reaotivity of £;-m©thoxybenayl tosylate preoludad careful 

t«olmi<iU0, th,® rate ooastaat for this oonjiound represented in Table 23, 

fh® effect of added electrolyte on the solvolysis is tabulated in 

Table 24. In general# it appeared that the rate was fairly independent 

of the salt concentration when the salt ms lithium perohlorate. In 

the oas® of potassiua nitrate and lithium chloride, however, a pronounced 

salt effect was observed. this effect was retardation rather ttian 

aoeeleratioa as on® might expect in a imimoleoular solvolysis. It was 

noted that in every case where the abnormal salt effect was operative, 

th® final titer of th® base titrsmt after a suitable length of time did 

not correspond to ooH|)lete reaction. This effect was later attributed 

93 
to the Bias8 effect described by Hanraatt and Baste . Thus, for a 

particular potassium nitrate run the reaction may be formulated as the 

following! 

a-(x-y) 

(x) 

CgHgCHj^IO- HiT CgHgClglOg (o) 

(y) 

CgHgCHgMÔ  ̂  2HgO ̂  Ĉ â CHO ̂  Ĉ Î CĤ OH ̂  HO; ̂  HSÔ  • (d) 

is reliable only to within 0.0005 secT̂  

cglgohgol  ̂ igo  ̂ (b) 

For this systeia 

(i) 
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Tabl© 24 

The Effaot of loaio Strength and Bleetrolyte on the Rat® Constant of the 
%drolyBls of Baasyl fosylat® at 25.3°G. 

Mole Percent 

Water 

Blleotrolyte 

(ffieq./ml.) 

k X 10̂  

(seoT̂ ) 

Percent 

Reaotion 

76.5 2.21 LiClÔ  1.10 100 

76.5 1.83 LiClO. 
4 

1.07 100 

7i.5 no salt added 1.02 97.2 

76. § 2.21 MOg 1.05» 85.7 

Calculated, see tesct. 

If W0 assume step (d) to be negligibly slow as ooni|)ared to (a), then the 

relative affiouats of beneyl nitrate and benzyl aloohol formed may be 

approximated by the yields of each after a suitable length of time (com­

pared with othsr runs using idOlÔ  solutions). Letting p aqual the 

percent aoid formed, on th® basis that th® added tosylat© was pure, then 

/V , \ 100.x . X 
p«x « (100 « p)«y or (3c + y) " • 

P 

The integration of equation (i) leads to, 

p p.a - lOCfeci 
— j j j  » ̂ 1̂ % "" "̂ 1̂  • (iii) 
100 p*a - 100x2 

This value of k:| was found to be in good agreement with that obtained 

in lithiuEi perohlorate solutions, as shown in Table 24. 
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The activatioa energies for the hydrolysis of the tosylates in 

76.6 mole psreant aqueous acetone v;er@ deteriained by the standard procedure* 

th® rates were deterrained at 25.S°, SI.4° aad 40.1®C. These values are 

listed in Table 2g for benzyl, ̂ -bromobenzyl and ̂ bromobenayl tosylates. 

Table 25 

Th© Aotiyatioa Energies of losylate Solvolysis in 76.6 Mole 
Percent Aqueous Acetone 

k X 10^ (seoT^) E 
fosylate 2&.30 31.4° 40.1° (Kcal./lole) 

Benayl 1.07 1.93 4.61 18.5 

£»BrofflobenByl 0.435 — 2.OS 19.6 

»»Broraob©nzyl 0.0881 — 0.395 17.9 

The Ultraviolet Spectra 

Ethanol used to nmke up the solutions was purified by treating 3,1 

of 9̂  stockroom grade ethanol with 19 g. laOH and 30 g. AgHOg. The 

mixture was refluxed for three hours and then distilled through a 30 cm. 

Vigreux eoluanaj a 200 ml. forerun was discarded. The middle fraction 

boiling at 77.7®C. was collected. 

Solutions of the coŝ ouaads were prepared by dissolving the appro­

priate araotmts of cosipounds in ethanol in 100 ml. volumetric flasks. 

The concentrations were ad;|usted on the basis of the extinction 
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ooeffioients h&ixig approxiimtely 20,000 iiter8/«ol«-ea. 

Th® salisat features of th® spestra ohtaiaed from a Gary Model 12 

Kaoording Spaotrophotojneter ar© reoordad in table 26. This table lists 

the maxiiaa and extinction coefficients of the confounds. 

Table E6 

Ultraviolet Spectra Characteristics 

C093f)0uM 

A 
> 
nax 

B 
X 
mx 

Band̂  

C 

®ia6X ^BBX ®Biax 

D 

^mx ®iaax 

Tolaa® 2780 2.63 2845 2.10 2967 2.28 3024 0.811 

4-Carboxytolan9 2936 3.19 «•>«> — 3107 2.79 — 

S-G arboscy tolane 2790 2.SO — — 2936 2.03 « — 

Stilbene 
A 

2940 2.71 
£ 

S070 2.62 
D 

3209 1.58 

4-C arboxystiIbeae 3078 2.86 S186 S.04 S338 2.00 

3-C arboxyBtllbene 2920 2.86 5044 2.54 3192 1.56 

®'Sxtiaetioa coeffioieatfi, ®E«a.x, are measured in 10̂  liter/iaole-cmi 
9 o/wd, where D is the optical density, m is the inolar concen­
tration and d i« in cm. „ values are recorded in A. 

fhe assignment of the bands was arbitrary. 
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Tolane \ v 
i|.-carboxytolane \ 1 

—'—•3-carboxytolane \ 

stllbene 

[{.-carboxystilbene 

3-carboxystllbene \\ 

2000 2500 3000 3500 

Wavelength (A) 

Figure II 

Ultraviolet Absorption Spectra of Some Substituted 

Tolanes and Stilbenes 
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fiia Infra-red %)0otra 

A f@w reprasentativ® infra-red spectra* of the derivatives of stilbene 

and tolaa® ar© shown in Figure 2# It is interestiag to note that the 

stretohiÊ  bands of th» triple and double bonds ar® missing in the 

tolana and atilbsn© derivatives, respastively. This abnormal effect has 

been previously observed for nearly syiraaetrical alkyneŝ ®̂ and oeteneŝ ®̂. 

*Kindly provided by Mr* H. Hedges of this Laboratory. 

Wotiz and F. Miller, J. M, Ghem. Soo,, 71̂ , 3442 (1949). 

Kletz and A. Suramer, J. Chem. Soc., 1456 (1948). 
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W*v« L*ngMi lit MIoowt 

Wav« L«fH> in MIwim 

Figure Ilia. Infrared Spectra of Stilbeaa Derivativesj 4«.Carboxy-
stilbene. Ethyl 4-Carb9thoxystilb©n0 and S-Carboxystilbene. 
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y» u) M^UHiN fcWM 

Figure Illb. Infrared Spectra of Tolaue Derivativess S-Hydroxymethyl-
tolane, 4-Hydroxymethyltolane and 4-Carboxytolane. 
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MiSULtS AMD PISCDSSIOS 

Til® apparent ionization constants of tha substitutod b®aBoio acids 

feftT© bo®a plotted against th® respectiv® sigma constants as shorn, in 

Pigurs I¥. fh© valtt® for the rho oonstaat obtainea from th.® slop© by 

til® rasthoo of least squares was 1»60 with a probable error, r, of 0.06S 

for semn points (a « 7). 

A siiailar application of the data presented by Hinshslwood and 

foBJmilâ '̂®, aad Tomsilâ ^̂ , for the saponification of ethyl beneoatea in 

aqueous a®eton® to the sigaa constants piTs rho equal to 2,373, r 0,049, 

a • If as shorn in Figure Y. fhis result corresponds to rho equal to 

1£2 
2 , 3?3, r ® O.OSl, n «=• 7_j obtained by laaiinett from a consideration of 

th® data of Binshelwood aad fosmila alone. 

Th® two deteradaatioas of the gigaa values for ̂  and £»̂ 8tyryl and 

m- and ĝ -phenylacetyl©ayl groups from these graphs are listed in Table 27. 

The rate oonstaats for the solvolyses of |)»Ewtho3!y and g-̂ -styryl-

b®nzyl tosylate wr® obtained by extrapolating values obtained in media 

coataiaiag lowar water ooaoentrations than that used for the other 

tosylates. In Figure VI the rate constants of the solvolyses of several 

tosylates have been plotted as a fuastioa of the mter concentration of 

the solTolyaiag aediam# fh® apparent similarities in the series of 

ourves can be readily seen. In fact it is possible to superimpose the 

curves on ©a© another without too much show of discrepancies. The upper 

foMaila, Am. Acad* Sol. Fennlcae, 8er. A67, Eo, 13, 3 (1941). 

iiaHJwtt, ref. 60, p. 191. 
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f&hl0 2? 

Sipwi. ¥al«®s for ĵ -Styryl and Phanylaostylwayl 

Substitumt 
«̂8t®P p̂l V̂®. 

ĜgHgCl-Cl- 0»020 o.oso 0.025 + 0,005 

-̂GofigGâ CI- -0,031 -0.070 -0.060 + 0.020 

»-o^ajgG=o- 0.180 0.140 0.160 + 0.020 

^-CgHgC^C- 0.21S 0.166 0.190 + 0.026 

fuad low®!* 5a8h»d ©urvag for £-a®%ho3̂  aad £»̂ »tyryl benzyl tosyl&te 

r«pr®.s®at th.® greatest deTiation of all th® curves, and are probably a 

good ltt<iicatioa of th® error in the i'at© sonatants for these two eon̂ ounds. 

That tii0s® ©xtrapolmtions ar0 TOlli is giwa further Justification by th® 

imrestigatioae of linstaia md Oruawalî ®̂ and Braud®̂ ^̂ . 

liastaln ani Srunwald haw slioim that th« rate oonstasat, Oc\}» for 

th® unimoleettlar solTolysis of alkyi halid@a, tosylatas and brosylates 

0aa b« sorrelEtsi with th® ooastitution of th@ raedium by th® equation, 

log Ici « bI - log kg 

•wii®rs 1 is a maasw® of the ioaislag power of ttia solvent. Log by an 

arbitrary daaipiatioa is th® rata of solvolysis in 8Ĉ  athanol-wator 

Ilinsteia axifi I. Ormwald, £. .tea. Oh®in» Soc., 70, 846 (li:>48). 
S» lia8t«ifl, E. 0ruawald and H. Hones, ibid., ?3, 2700 (1961). 

Braud®, 4* Oii®a. Soe., 443 (1944), 
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solution. Talw© of m is a luaction of the particular oon̂ ound being 

8olvoly8®d and is a oonstaat for various solvolysiag media. In tha cas® 

of feinar̂  solvonts thsre axists a smooth function of th® Y-valu« with tha 

water ooî oBitioa of the medium. this faet iî lles a oorralation of 

log k ffith the water eonoentration. 

Brauie has given a ainilar type of correlation for the uniiooleoular 

ael<i-sataly««.d r'̂ arraageraent of unsaturated alcohols as a function of the 

dieleetri© constant of the medium. In the case of aoetone-water solutions, 

1 Sfi 
an exaiffliiaation of the date of Bamed and Owen for th® variation in 

iielestrio oonstant with water ooaeeatration reveals that a aaooth raono-

tonio funotion ©an be irawa for th® plot of dielectric constant with the 

aole fraction of the mter in solution. 

Froia a oonsideration of th© above investigations it appears that th® 

extrapolation of th® rata constants is Justified in the case of the 

solvolysis of henzyl tosylates. 

th® logarithms of rate eoastants for uniKolecular solvolysis of 

hensyl tosylates have bean plotted against the sigaa values for the 

eorresponding substituents in figure VII. An examination of this graph 

reveals a rather indefinite linear relationship whioh charaeterisee a 

poor iRiaaett correlation. A elos® scrutiny of the data, however, discloses 

a fair linear rolatioaship. If one ©xcludos the following pointst 

g»-aetho3t:y, g-»0thyl, £-̂ -styryl and to a certain extent £- and m-phenyl-

aoetylenyl and ffi»styryl, the values of the rho constant for the six 

Haraed and B, Owen, ̂ Ihe Physical Chemistry of Blectrolytio 
Solutions", leinhold Puhlishing Corp., Mew York, M.Y., 1943, p. 118. 
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Voriotion of F%at"e Constant 
with Solvent Connposition 
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reaaiaing points eTalimted by the laethod of least squarss is -2.20 with 

a probabl® error of 0.07 (n » 6). Th© Inalusion of ̂  aad £«-ph0nyl-

ao©tyl®nyl aad £-jJ,«styryl ia th© c&loulatioas of rho yields, « -2.19 

atiid r » 0*E? {n » 9), ffea rho valu®, thug, is not changed by tha 

indtttioa. of th.©se latter points. It is the probable error for this 

valtt® that suff@rs mat. If on® assumes a rho value of -2,19, the raost 

reasonable figure, the mlues for £-m@thoxy, ̂-methyl and £-̂ 8tyryl all 

suffer fro® mat of deaeat sorrelatioa. 

fh® deviation fro® a linear relationship is shown up more clearly 

in Pigtjr® ¥HI in which the logarithm of the rate oonstant for the 

®olvoly»i8 has been plotted against the logarithm of the rate eonetant for 

the sefoalfieation of th® ethyl ester of the oorresponding acid. The 

l8a«t squares aethod (assuming an equal error in both "Variableswas 

applied to all th® points except £-!stethoxy, ̂ -methyl and £-|J-Btyryl to 

obtain th© best straight line shows in the Figure. 

That the value aBsuffied for rho is & reasonable one is shown by 

126 Rf 
©xaaining th© data of Olivier , and Bematt and Jones for the 

iolvolysls of eabstituted benzyl chlorides. The logarithms of the rate 

eonstants froa these data hav® been plotted against the siggm constants 

in Pigurea II and X» The data reported by Olivier appear to be more 

collet® Bino® he obtained rat© constants in different media and at 

several teî er&ture® as shown in Figure IX. 1 striking similarity in 

Olivier, Ree. trav. chlaa., 66, 247 (1927). 

lorthiag and J. Geffner, "freatmeat of Experiiaental Data", 
J» fiiley and Sons, Inc., 194S, p. 268. 
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til® <li8po8i%iQii oi th# points aromd the best straight lias ia ®ttoh oaae 

Is »xMbit©d for all the curves of benzyl chlorides (Figures XX and X) as 

well as that ©f beaeyl to»ylat©s (Figure ¥11). It ia apparont that ia 

all th® oasas shoTO, th» c0B|)0UJad eoataining the 2̂ -m0thyl subatituent 

deviatos from -tfe® linear oorrelation of th© logarithn of the rate oonatant 

aad aigaa showa by tha others. A mrm apparent oorrospondeaee between 

the solvolyais of bea«yl ©hlorides aad the solvolysis of bensyl toaylates 

is ahoim ia Figure XI» ia wliioh the logarithaa of the rates of solvolysis 

of th® chlorides have been plotted against the oorreapoading values for 

the tosylatesf In the figure the values for the benayl chlorides have 

been corrected to 2S.S®S. using the activation ©nergies listed by 

Olivier̂ ®̂« fhe slight differeao© in solvent oon̂ osition in the two 

series (44 voluiae-peroent for bea«yl tosylate aad 60 voluiae-peroent for 

th® ben«yl ohloride)should have little or no effect on the slopes of this 

curve. fhia i® a result of the siailaritiea in the curves obtained from 

th® variation in the rat® oonstaaits for several toaylates with water 

ooâ oaitioa. It appears, thus, that whatever deviations do exist for 

the solvolysis of benayl chlorides applicable to the toaylates as well, 

aad are, therefore, a function of the ben«yl system exclusively. 

IJeviations fro» the itamett relationsiilp were pointed out early in 

the stuiies of this equation. fhe aost well-discussed case is the 

deviation of g-aitropheaol aad g-aitroaailine la the relationship between 

the ioniiatioa eonstants of phenols aad anilines, respectively, aad the 

slfeaa constants for the substituent groups. In these coiapounds it was 

necessary to assign two values of aigma to the £»nitro function, one 
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valu® t&r anilines aad phenol derivative® aad aaother value for the 

aaoiwly, aati have attributed the "abnorinal" behavior of ̂ -nitrophenol and 

£»Bitroaailiae to the strong resonaaoe interaetioB. of the subeitiuent, 

£-aitro, with th® ring. They feaoralized by stating, 

»..Ilaiaisett equation,«...is a fairly close approxissatioii for aeta 
and £i£&-substitution, except whea a £ara-substituted group 
resonates so a® to put a positive charge in the riag. In suoh 
cases it is .ueeessary to us® two values of sigiaa for the group 
in the para fositioa.,' one when the atom from which the proton 
dissociates resoimtes direotly with the aroaatio nucleus and the 
other for aeids in which the benzene resoaanaes are lees directly 
concerned id.th the dissoeiation* 

In addition* such substitueats as g»CCX)I, £-CM, g-CljCO, £-CHgSO and £-FgG 

showed this abnormal behavior. Thus, in all these cases, it is believed. 

that deviations tr&m th® ilawiett equation (^•e_»» assignment of two si^^a 

values) in the case of phenols was due to the additional rasonanoe 

gtabiliKfi.tion of th® anion. Fara^nitropheao1 may be used to typify the 

ease as shown below* 

fhe extraordinary resonance stabilisation of th® anion of £-nitrophenol is 

not exhibited in the ease of the aeta-isomer nor in the case of the other 

well-behaved aeta and gara-substituents. 

fh® siiff»r®nce in th® two sigma valueo aoslgnabXe to those eubatituents 

Branch and a. Calvin, Eef. 24, p# 249. 

1 
other, bensene derivatives. Branch and Calvin have pointed out. this 
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way giT0 aa tndieatioB of the extent of this additional stabiligation 

in tb® aaioa* fim delta eim& to1«®s ar© listed for 8»v®ral subBtit-

uants ia fabl® ES, These Talues are the differences between the aigma's 

of the phenols and the corresponding acids. 

fabl® 28 

Delta SifSM Values for Phenols 

Substitueat 
'^phenol ^acid 

g-Iitro 1.E7 0.78 -0.49 

£-0yano 1.00 0.66 -0.34 

g-Acetyl 0.87 0.43 0.44 

g-lethylsulfony1 0.98 0.72 0.26 

|^--frlfluoroa«thyl 0.73 0.53 0,20 

It is aot uweasosable to extend the interpretation of this abnormiil 

behavior to otlier syeteas by stating that any substituent which may 

eontribut© stringly towards th® Btabiligation of the products in an 

equilibrium process (or the stabilisation of the transition state, in a 

rate process) as a result of th® freeing of an ©leotron-pair in that 

sydte®, wmy lead to abnornml Sara^tt correlations. 

A logical ®3d;en8ioa of this arpiaeat would lead one to state that a 

system in iiitich th® vacating ox" an orbital (formation of en open sextet) 

were i^ortant in stabilizing the product of an equilibrium process or 
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stabiliaiag th® tratasitloa statQ of a rat® proosss would show a oorro-

spondiagly abnormX behavior la the M&mmtt relationship. Moreover, 

those substituents which oan doaat® an al®etroa-pair to tha riag 

aocoBWodat® a poaitiv® ciMurg#) wowW b® expeet^cl to dariate. In 

partiealar oa® might ©xpsot g-amino to show gueh a toaiiavior beeeus© of 

the attraetiv® resoaaaea foriiss that saay b© isaportaat for this system as 

stoim balow. 

la order to apply this iaterpretatioa to eolvolysis of boazyl 

tosylate® aad ohloridas, it saay be profitable to uadarstend aiori3 coro-

plstely the natur® of th® solTolytic prccess for this system. Ther« is 

•* g « 
still soiffii ooatrov®r«y as to th® ex«et nature of th© uairaoleculsr 

solvolytie proewB® of tertiary and benayl halides. The two meehanisras 

for thi® proetss ean bo forissulated ia the following snannarj 

I Iix„ 

K4 » HjO lal. SOHj.^ 

II • HjO (HjO R,,)* » x;, 

fh® first aas® is a two-stop proooss involviag a rate-controlliag ioni-

aatioa of th® solTated haliee to foria a solvatod. oarboaiuia ion, which 

rapidly r®a®t« ia a follow.up prooes® with th® solveat to form the 

solTatad first ooajugat® aoid of the produet. th® saeoad maohaaism 

postulates aa attack by a solvaat saolaQule oa tha solvatad halide aolaoule 
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to fora th® protoixated product directly. Recent work by Craa^^® aad 

WiiX8t«la aaad co-workers Mv® given greater support to the foi^r 

Bwehaaism, A close exaiaiaatioa of the rate-determining activation 

process (vit»i the heterolytic ssTer&noa of the old bond), however, shows 

that th®6® two aoohftiiisffig differ oaly in degree a»ci not in kiad. J'or a 

critieal aaalysi® of th® kiii^ties of th® solvolysis ̂ e need ooasider only 

the aatur® of th® transition state for th© priiaary ionic dissociation 

process. 

For til® solvolysis of bensyl toigrlates the rate-limiting process 

ArCHgOTs =i- ArCl,^ + OTs 

would be ©xp®cted to b® aided by'elsetron-ropelling substituents oti the 

aroraatic system. The extent of tMs effaot is indicated by the large 

aegativ© value obtained for rho = -2.19). As it has been pointed out 

98 
by Swaia and Laagsdorf , the large negative valu® of rho indicates that 

i •' 
in th© traasitioa state for the solvolysiS;of bsaayl tosylat©, a large 

formal oharg® is place on the aromtio system (that is to say, there is a 

large aaoimt of ioaAo oharaater to the old bond). 

fh® iaagttitud® of th® boad-breakiag process in the transition state 

depeads not oiily on the aroHMitio system, but also on the nature of the 

departing group. Siaoe the rho constant for the solvol^^sis of benzyl 

Gra«» £• M» Cheat* See», 74, 21S9 (1962)? and earlier papers. 

linsteitt aad K. Sehreiber, ibid., 74, 2171 (1982)} aad 
earlier papers. 
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ohioridas -l.SS) under similar ooaditions is found to be less than 

that of the toaylates ( I" » -2,19), the indication is that thar© is a 

more oos^let® braakiag of the old bond wh#n tosylato is the departing 

group, and, therafora, a larger foraml sliarge is placed on tha aromatic 

system. Th® greater sensitivity of the tosylatos to th® bond-broaking 

proo#8s aay b® partly attributable to the mor© conflate activation of the 

tosylate aaiaa. 

Ths dsviatioa of such £ara-8ubstituents as mathoxy and msthyl 

indioates that in additioa to tli& large amount of ionic character to, and 

the noriia,! rssoaaEos stabilisation of, the' transition state of tha 

solTolysis of benayl tosylatas, tharo is an additional aiaount of ionic 

aharaoter (however small it way bs) mA resonance sta.bilisiatiou in the 

caas of £-raothoxy and g-sjietliylbonzyl toi=yla,te asoribable to tiis lacila 

resoaaace interaction of those substltuent groups \tith the elocitron-

a@fici©rit aromtio system shown belo%. 

fhe esrtont of this additional aid to th© bond-breaking process (magnitudo 

of rho) will depend greatly on th© ability of th© substituent group to 

for» a TT-aoleowlar orbital with the arojaatio ring. That the lowering of 

the actimtion @»®rgy and concomitant broadening of the plateau repregen-

ti»g -tna transition ete,t« in the potential energy diagraati for the system 

is du8 priaarily to th® type of para*aubatituents described is shown by 

the "aorml" behavior of K-methoxy and m-methylbeajsyl tosylate. 

As pointed out by Swain and Langsdorf, there exists a continuously 

y^CilgOSa o V 
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rarying fmotion of rho with each substituant. Th® value of rho for 

®aoh substitueut (or sarias of substituents) will depend greatly on the 

ability of «ach gro^;^ to eontribut® to tte stability of ths ionic 

traasition state. 

fhe "abnoriaal" behavior of g-siethoxy and gi-mathylbonByl tosylata waa 

131 
prodietsd in part by th© large E»soia®rio aomsnt of g-nitroani sole , 

132 
auoleophilio reactivity of anisol® (toward broaine, for example )t and 

ISS 
th© large overlap integral of the 0-C bond , Hyperconjugation had been 

previously prescribed to aooount for the electron-releasing properties of 

the £-ffl0thyl-sub»titue«t by Baker and Sathan and others^®^. 

On the basia of the foregoing interpretation, it appears that there 

exists a large difference in th© eonjugative ability between the carbon -

carbon double bond and triple bond. This difference may be deduced from 

sigma values given in fable 29. 

fhe JBuoh larger positive values of delta a ipsa for the £-8tyryl group 

than for th® £«phenylao«tyleEyl group indicate e that the oonjugative 

ability of th® double bond is much larger than that of the triple bond 

L® Fevre, "Dipol© Moaeats", Meathuen Co., Ltd., London, 1948; 
frang. Paradag Soo., 30, Appendix IJJ. (1934), 

luntreas and S. Mulliken, **Identifieation of Pure Organic 
Don|jouads*', J. liley and Sons, Inc., Hew York, w.Y., 1941, p. 826. 

Mullifeen, £. to. Chem. Soo., 72, 449S (1950). 

Crawford, ̂ jart, levs., 3, 226 (19*49). 
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Tabl® Z9 

Belta Sigaa ¥aXu®t for flsnssyl fosylates 

Sttbstitusat ^4, i x. <3" ACT 
tosylat® aoid 

£»M®thoxy -2.0 -0.27 -1.7 

£-ii»thyl -0.63 -0,17 -0.46 

j|«.(i-Styryl -1.0 -0.05 -1.0 

g-Pheaylaeetylesayl -O.OS +0.19 -0.22 

with, aa el©etron-d,©fioi0at aromtio system. 

fhis effect ahows up aor® clearly in the oass of th« ionization 

oonatants of th© gara-substituted acids previously listed in Table 27. 

the iadioatioa, then, is that the carboaiuia Ion contributing to the 

transition state is sKJr® stable when it is ethylenio, 

then when it l« aeetylenio, 

Thia effect was predicted, in part, from tha analysis of the photoohemioal 

1 OK 
exoited states of th® two systems by lalsh . 

Froja a ooii^arison of th© ionization potentials of acetylene and 

ethylene (11.41 and 10.60 volts, respectively), it is evident that the £i 
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elwstrons of ara saor® firmly bomd to ths nuelaus theua the 

eorr@«foaii'ng @l®©trQas of ©thyloaa. fhm tighter binding of th.a £i 

9l©®troas (i.*®«. gr®«,ter localization) of %iim triple bond oan b® attri­

buted to the larger £ charaotsr of tto# sipaa bond (sp^-sp) as compared to 

the sigjm bond of tli® double bond (sp^-ap^). The larger looaliaation of 

tb@ gi^ bond in acetylenes is a direet result of the decreased "repulsion" 

between the sigaa eleotrons and th© elestroas^®®. In particular the 

relatiT® ©oajugativ® abilities of the triple bond «ind double bond would 

b® esqpeoted to b® amnifested when the oonjugation is at the expense of 

the delooaliaation of the £l electrons of the triple or double bond. 

Ihe pr©ending amlysis of the eoajugatiire aptitudes of the triple 

bon<l and double bond way also b® mde froa a slightly different point of 

rim* She bond distance in tolane and stilbene given below are 

reliable to within 0.01 

Since the mgnitude of the overlap of orbitals between adjacent atoms 

depends on the distanoe separating the atoms , one would expect from 

Robert»oa, Froc* Roy* Soo.« A164, 436 (1938). 
T. Dyatkina and M» Syrkin," '^'struoture of Molecules and the Gheaieal 
Bond*, Interaeienoe Publishers, Inc., Mei» York, N.Y., 1960, p. 180. 

lalsh, £. Oheffi« Soo., S98 (1948). 
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only ft eonsideratioa of th® rafii&l ooffiponent of the orbitals that tha pi 

bond of ©thyl«n@s will b@ weaker than that of acetylenes. fhe magnituda 

of this «iiff®r©noe in ®n@rg^ say b® calculated by th® nssthod recently 

ptiblishad by Co«ls©a smd Altmana for the oou^jrassion energy raquirad 

in the th»or®tieal dasoriptioa of h@nz<$n®. 

The ehang® in tti© charactar of th® sigaa bond my, thus, be invoked 

by both descriptions to aooount for tha greater looalisation of th® £i^ 

electrons in th® triple boad than in the double bond. The decrease in jb 

character of th# sigaa bond not only increases th® delocalissation of th® 

£i oleotrons bat also insreases the bond lengths between the two atoms 

oo%ri8ing the double and triple bonds. It is not eatirely clear whether 

the two dasoriptioas are equivalsnt, mutually dependent on one another or 

additive. Th© interdependence, equivalence or additivity of these 

effects is not explicit in tkie quantum meohanioal forjoulatioa of the 

systea. 

Th® difference in the localisation of taa gi electrons in the double 

bond aad triple bond is also apparent in th® ionization oonstaats of the 

para"substituted aoid® previously listed in fable 27. 

In £»pheayla09tyl®aylb@a8oio aoid the decreased repulsioa betweea 

the Sigma electron® and th® aleotrons ia the aoetyleaic aoid has 

caused an increased ionization ©oastemt (with respect to benzoic acid) 

due to th® increased £i bond order of the alpha bond (between substituted 

C. Goulson and S. Altmann, Trans* Faraday Soc., 48, 293 (1962). 
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ring earbon and tixa substitusat). It is to be noted, that this incroasa 

in, the boad ordsr of th® alpha bond is at th® ascpeiise oi' the aromatic 

system# fhis type ot iateractioii of the eubstitusnt witn the ring is 

ooasidered to b© of a non-elassieal iaduoti-^e effect operating on the 

bond systea. 

In ̂ pheaylaoQtyleaylbeniBoic acid similar oonslderations as those 

proposetl for ti-i© gara-isoser lead to the description given below. 

In addition to ths ££ bond perturbatioxis that have been invoked for 

tlie iatoraotioa oi m aoetyleaio substituent with the aromatic ring there 

is another faotor i^ioh must be taicen into account. If one considers the 

oonstitution of the sigm bond between the acetylenio side chain and the 

•COOH 

COOH GOO" 

+ H 
+ 

aroiaatio ring as consisting of an sp orbital of benzene and an sp 
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orbital of acetylene tlien th© larger s charaoter to the acetylene portion 

of tho boad. iadioatss the unsyfametrical distribution of the eleotrons in 

the boad, th® ©xistenc© of a dipola orisntad in. the direction shown 

b@low. 

fhe situfttioa in aostyleaio-Bubstituted benaQnos oan b® adsquately des-

oribed on the basis of a dipola cos^jomded of two ©ffaots reini'oroing one 

imother* fh® ©ffect of aa aeetyleaio substituent, thus, appears to be 

aifflilar to aitro or oyano fuaotion, which have besa treated thooratieally 

by Westheimer'^® and Saraousaiiis^®. 

In the ease of th® correepoadiae ©thylenie oos^ounds the repulsion 

between the sigtm electrons and the electrons may oause a decrease in 

th® |d bond oraer in the beta link (oos^rieing the double bond) and, 

therefore, an laorease in th® order of the alpha bond. This ©ffeot will 

be felt especially when the aroasatic system niakas a aemad for slectrona, 

as is the ease in the uadissooiated g_-Vstyrylbenzoic acid shown below. 
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-CH-CS- -COOH -Ca-CH- -GOO' + 

1 
-&.C1 =<^ -450011 

(̂ Ĝn*Gii=(̂  -eoOK 

that this @ff©ot is r@al is appareat from tii® aegativa value of the sigaa 

ooastaat (wiiioh iadioates that th® acid la waaker than, baasoic) for the 

£* -gtyryl group. 

the diffareaa® ia the ionizatioa constants of th© para-substitutad 

ao®tyl9nio aeld mid th© oorrespoBding sthylanio analog may, thus, be 

partly attributed to th® greater losaliKation of th® pi-eleotru.s in tho 

triple feoad. It should b® noted th® sigwa. bond of tho alpha link in tho 

«thyl@Bio Go^ounds is eoasidersd not to be polarigad since tho oonjjpoaent 

orbital s ar« sguimlant (sp^-sp^). 

fh® Itmisatioa oonstant of a*i^-styrylb®nzoio aoid is shown to b© 

larger tl-ian ti^t of benzoio aoifi, indioating that the eigma constant of 

thaP^-styryl group ii©s suffered a ciiaag® in sign in going froa th® para 

position to th® iaota position. That the ®-|^»8tyryl group should have a 

positive Sigma aoastaiit is not apparent from a ooasidoration such as tixat 

giwa previously, 

fhia situation is akin to that attributed to the ̂ phonyl group. 

It is not oneoiiifflon to find statemnts in the literature attributing a 
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positiT® iBduotive effect to th© »-ph@iayl group. Thus, tho increasingly 

iarga loaisatioa ooastants of .ao«tio, pheaylaostio and diphex^laoetio have 

bean rationalized on these grounds'"^®. Raoent ijavestigations by Liohtia 

138 
and Slaner of th® ioni^atiosa constants of biphanylyldiphenylchloro-

rnethanas in sulfur dioxid® yieldad th# following values for tha equili­

brium constantsI 

a G1 CI 

-i »<p cf> -i -

a f 
4.0S X lO*® 23.2 X 10"^ 3.12 x lo"® 

139 
£eiffer and EuiJ^f have measured the basieity constants of eubstituted 

aniline aad have reported them to be a® follows, 

aniline 4.87 

la-phoaylfuiiline 4.18 

g-pbenylaniline 4,29 

The data on the saponification rates of phenyl-substituted ethyl 

beaEoates is not ooiE^let®. In the ease of the saponification of ethyl 

140 
g»pheaylbeasoate in aqueous ethanol , the value of th© rate constant 

corresponds to a value of +0.015 for the sigisa constant, using the rho 

iichtin and fi. Glazer, £. to. Chem. Soo», 75, 5527 (1951). 

leiffer and P. BuHspf, Compt. rend., 2§0, 1874 (I960). 

Kindler, imn., 4§2, 105 (1927). 
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ooaastaat ©wluatad by to be 2.50. Similar studies by 

141 
Tofflialla in aqudous acetoa© lead to a sigma valuo of -0.015 for tha 

£-pli8ayl group. the average sigaa -wtlue for £-ph®ayl is apparently eero. 

fii© oorr®8poadiag gigista mluaa for a^pheiayl ar©, uni'ortunately, 

waaTailabl®. f«rth.®r work along these lines is contemplated. 

to exaBiimtioa of the aig^ values givea toy Baramett^^^ reveals that 

the data ar® aot eo^letely reliable 

From aa iaspeotioa of th© data of Liohtin and Slaaer eoid Eeiffer and 

Ku^f there appears to b® an unrasolvabl® anomaly. Thus, if -we attribute 

to th® g-pheayl p*oup a large ability to stabilize th© carboniuai ioa 

resulting from th# ioaization, of the chloromethans, ma attribute a 

positive induotlv© effect to the m-phenyl group to acoount for th© smaller 

ionization coastaats of th© a-biphenylyichloromethane as compared to 

trityl chloride* thm th® order in the basicity constants of the substi­

tuted anilines should be opposite to that reported above. A probable 

resolution of this difficulty may lie in th® reexamination of th© ioni­

zation oonstant of g-pheaylaniline. 

• It appears, thus, from th© preceding discussion that a oonoeivable 

rationalisation of the effect of the ra^phenyl or s^|^-styryl group lies in 

attributing a certain amount of £i bond order to th© bond linking the 

substituent to beazoate anion or aniline of tha type prescribed for ij-

aad g-phenylaeetyleaylbenzoic acid. In g-^^-styryl benaoic aoid this 

effect is apparently over-shadowed by th® resonanoe stabiliaatioa of the 

ToB»ila, L. Brehmer and H. Slo, Ana* Ac ad. Sci. i-ennicae, 
Ser« Mo. 9, 3 {194:2}. 

BurJsiiardt, D. Jenkins and C. horrex, J. Chem. Soo., 1654 (1936). 
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t'rm mM. fh® for©goiiig analysis is reasonabl® on the basis of the very 

saall effects that are fowid @xperi»®ntally (sig^ oonatants of K-ji-styryl 

and £-{^-styryl are 'K),028 a»d wO.OSO, rsapectivsly). 

At this point i«© iau®t pause aaci attesfit to understand more fully the 

natur® of th® deviations from the iiaisraett equation that w© have observed, 

with respect to the solvolysis of beaayl tosylates and ohloriaes. In 

partieular it is necessary that w© deliberate on the limitations iavolved 

in tJi© foregoing interpretatioas of ih© deviations which are exhibited by 

8uoh Bubstitueats as g-aethoxy, g-metiiyl and £-|i-8tyryl on the solvolysis 

of bensyl tosylates.. Thus, a disaussioa of the continuously varying rho 

fuaotioa for th®a@ substituents and aoeojapanying speculation as to the 

nature of the traaaition, state for this reaction (with respect to the 

boa<i-br@aMag proeess) presumes funiiamentally that the system in question 

obeys the HaMtaett relationship# That this is not always the oaee is 

pointed out s«bg®qu®atly. It is our desire to rationalize the anomalous 

behavior with th® fundaaental assuB|>tion® inherent in the HasBBett equation, 

the lifflitatioas of the llammett equation have been explicitly 

In "bri©#, for th@ process, 

— -V 
^=1 

the rate of the reaction is given by the rate-limiting step. 

Ilasamett* ref. 60, p. 194'. 
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wlier# the asterisk repr@8®nts the traasition stat®, and tha term, 1'", is 

tii# ©onstaat for tk© aq-uilibriu.® batween th© roaotaiits anu. tke activated 

ooajilex. fh« £'rm energy of activatiou is given by, 

» -»i 1b ~ ^bx*aex (l) 

and tfe® beat of setivatioji by. 

d la I* ^ d la 
Afi* » Ef + />B* • Ef^ p ® 

df dT 

( 2 )  

•wh®r®4l* aadAl* r®pr®8®tt% the differsno® in tb,® potential energy and aero 

point ©ner^r of the rsaotaats aad tii® aetimted coi^l®*, respeotively. 

The t®rBi«, fgjc* %x» represent th© partition funotions of the actirated 

ooi^le* and th# reaotaats. the other symbol® hav® their usual thermo-

dyaamie sigjnifioaae®# 

As Kaaawtt points oirt;, th® direct correlatioa of rates -with 

structural properties of th® system is feasible whaa an analysis can be 

mad® in terms of potential and kinetie ©nargy changes ii^lied in the 

©qaatioas above* Mormrer, th® iiiterpratatioa of the effect of substit-

uants oa a aoleoul® aaist b® wide «ith respect to the potential eaergy 

change (th© quantity that ueasures tha internal energy change of the 

moieoul®). the eorrespondeaa© between tha rate of th® reaction and tliis 

potential aaerg^ ohang® ooeurs only in limited oases. 

If oa® tioasiders the fundamental thermodynaKiic aquation, 

aF* » AH* « fas* (3) 

then a siraplifying assuaption ^S* « 0 leads to &F* » Prom equations 
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(1) md (2) -this result l«a<is to In * 0 d In ̂ rxV r̂x m q 

df 

temperatures. The constancy of the partition 

fuaotions of th® reactaat and th@ aetiwted oomplax lis^lies the ohango in 

S0ro point ©ner^f is zmro* Thus, tba simplifying condition » 0 loads 

to 

aF* » » -ag* . (4) 
XT 

For a series oi similarly oonstitut®«i ooE^ounds, a and b, 

4 k. 
aF* - iF* « -ST In - -Kf In ̂  •« 

or 

In - In 

wMoh is in tii® form of the Haioaatt equation, fh® value of ''®-® 

tak®i by Iftawatt to b® aaasured by th® variation in the ionization oonstaint 

of b»as5oia acid with subgtituants* 

fh® correlation of rates with tit© potential energy ehaag© was, thm, 

imd® possibla only by th® siaplifyiag assuH^^tion « 0. In tho 

raaotions of aeta and £^a,-substituted bonzea® deri-mtivss it has b«©n 

found QXperinsaatally that th@ -iiS*.''of aaany reaocions is actually -i^ero, vary 

elo«® to it, or ooastant. 

fh® oonstaiit terms of the Arrhenius aquation, 

k - PEq*^^^ » (7) 

where is the ©E^irioally deteriained activation energy, have been 
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to the «atropy eitaagee acoordiag to the torauia, 

P Z 
AS* - AS^ « R la . (8) 

Acoijrat© fi}©&8ur®i!®»ts of haY® sh.owa that its trariatiori with In k is 

Tary aearly IT In aaay oas@s, as ®xp®otati from equation (7). liammstt 

poittts out that it is in just such oasss as this tlmt tlia equation has 

b«sa found to toe most applieabla. 

The solTolysis of hmzyl chlorides is one of the sevsral reactions 

•which ha¥© b&en reported to show aoaeonstaat -a S^'"' terms. .-.owever, a 

olos® ©xaiBiaatloa of th« data of OliTler, on the solvolysis of benisyl 

ahloridssj, shows that iadeeo, th&r@ i® a limited linear oorrelation 

b®tw@©a aad laa k as shows la Jigure 12. This indicates a oonstancy 

ia PZ tefas for several asHihers of th« series. Sine© the actiTation 

eaergies •v.-ere determined at only two tesaperatures, a small discrepancy 

in its TOIu© mst be overlooked, A strikisg misbahavior is apparent in 

the case of g-tt«sthylb®n«yl chloride, a misbehavior in the l-tarasnett rela­

tionship. The laxga rate oonstaat for th® solvolysis of this compound 

appears not in th© @a©rgy of aotimtion but in tha entropy torms. Thus, 

aecordiag to the basic- hypothesis, it is not inexplicable to find £-m®thyl-

baazyl tosylate ©^iiibitiag aa anomlous behavior. 

In th® pr@irious dissuasions, tn® variation of th® rho constant for 

tha solvolysis of benzyl tosylates an^ chlorides with substituents, such 

a® g»ffi6thyl and £»fflathoxy, was considered sololy on the basis of the 

lQ*!®riag of th® activation 0aorgy du© to ths stabilisation of tl-ie ionic 
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traiisitlon state. Sim® we kaow that S* is ao longer eoro for tha 

reaotions of th.®8® particular confounds, it is neoessary to determin® to 

what ®xt®at tfe© rito ooastwit cstti «tilizad to Interpret the solvolytio 

proeesaes for thes® eoapouads. M will b© subsequently showa, a 

aeoess&ry ooadltioa. for thm •qualitati're disousBion of the rates on the 

bttsis of aetimtiott rnmrglm alone is that thore exists & correspondence 

Ijetween the resoimao® eaergy and the aetiTatioa entropy. 

If one considers the process, 

K* * 
KX. V- products 

if 
El • E' IX 

®2 

where aq, g and s represent the solution, gas and solvation process, 

respestively, then 

» p! + F 
«•% g 8 

Where F. « P - F 
8 82 S^ 

and F*q - H* + - t( Sg • Sg) . 

If on© assuBMSS that for a series of eosEpouadg, i and j, the differ­

ence in the heat of solvation between two unionised reaotaats is sero, 

i >e.«, 

th«a M* + Ig is approxiwited by the heat of activation. fhe difference 
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for a sarl«8 is then, 

Bg) « (B + I . L), 

wher® E is th® h®at of dissociation of H-X bond in th« piBoous process. 

I is the ioaigatioa potential of S, and t is th© hoet of solvation of B"*". 

Diagraraatioally this i® represented, b®low* 

«• + X. 

For a torios of similar eoKpowinis th® toIuo® of (D + I) will depend 

to a larg® ert@nt on the reaonanoe stabiliaation of the corresponding free 

144 
radical and earboaiua ion* . In general, the greater the stabilisation 

of th® oarboniutt ion, th© lower will be the energy for the overall dis­

sociation process. fhe value of for a series of compounds will depend 

on the geoaetrieal configuration an<l, also the distribution of the charge 

146 
in the oar'boniuia ion. Ivans has showaa that the differ anoe in the 

Ogg and M* Polanyi, frarts* Faradi^ Socn, 31, 604 (ISSS)? 
1. Ba«#aa, 1» Bvans and *. Polanyi, ibil., W« 377 (1941). 

Evans#, ibid., 42, 719 (1946)? ''Eeaetions of Organic Ealides in 
Solution**, liinchester University Press, Manchester, Great Britain, 
1946. 

Potential 
Energy 
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solvatioia ®»ergy of t-butyl oarboaiua ioa aad methyl oarboniua ion (if 

oa® asswes th@ oharg® ooae®ntrat©<i oa the central oarbon) liea ia th® 

distanee of olos0s% approaeh of th® dipolar solvent moleculae to the -two 

ions, baing largsr for aethyl earboaiuro ion than for t«butyl carboxiium ion. 

Si® on®rgy of th® ioa-iipol© int©raetioa, will, moreover, depend on the 

aagttitua# of th© charge. If on© asstmes that th@ geometry of the substi­

tuted beajsyl oarboniwn ioas ar® approxlaately th® same, th® difference in 

th® solmtion «a@rgy of a aeries of these ions will vary inversely as the 

diffusioa of eharg® oa @aoh species. Proa th® concept of resonance, the 

ion possessing th® greatest amount of resoaaaoe stabilisation will be 

expected to show th® largest, diffusion of charge (attributable to the 

number of canoaioal foms that eaa b® o.oasid®r9d for th® ioa) and, there­

for®, the gnallest ©aergy of solvation. 

fh® effect of th® stabilisation of th® earbonium ion (in the transition 

state) on the aetivatioa energy is shown ia two opposing Bjaimers. Oa the 

oa® hand, resoaam® stabilisation of the ioaio forms leads to the lowering 

of th® internal ®a«r,Qf aad, on th® other Mad, leads to a smller energy 

of solvation of th® quasi-ioa. fh® eojabined effects are not predioable. 

If on® aasuaes that the internal energies ia th® ground states of all the 

species are th® saa® the absence of resonano® iateractions), the 

effects w® hav® a®ntion®d may b® a©®a in the diagraia below. 
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Figure XIII Potsntial Energy Eiagram 

fh® g&moua process ®a prediete that 8tat« a will b© higher anergy 

than state b, if B**" represents the ion possessinf a larger aiaouat of 

reaoaano© energy. Jiiere is at yet no reliable method of predicting the 

position of o or ©1, with respect to d, where oo (oo^) and od represent 

the overall aotimtion energies. 

Ctoe my assume with a fair aiaosmt of confidence that the gas phase 

process will inirol"r® no difference or very little in the entropies of 

activation for a series of siKxlar 0 0ii|)0und8. This ass>«i?)tion seems to 

be Justified froa a survey of the extensive correlations of the ilarajnett 

equation. fhis internal entropy of activation can arise from the differ­

ences in the ohaage In the vibrational and the rotational partition 

funetiona between the activated state and the ground state for a series 

of ©ompound® as the function of th® alpha bond• 
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fhtts, on® would ©xpeet tkis diffwsnc®, if present, to show up in tho 

«®,panifioii%ioa rates of athyl phenylaoetata® and in th« ionization 

oonstimts of phoj^laoetis a«id» f3a@ adJi0r«aoe of ttiaso coapounds to tha 

Hawaatt ral&tioasMp (r « OfO? and 0»0S, r®8p®etively) indicates that 

this differane® i® sa»ll» fhat th@ oatropy terns consist for tho owst 

part of th® soliratioa entropy was also eonsidarad by Evams^^®, Tho 

dapandeas® of ISia ©atropy ©f solvation on tha structure of R was dia-

oussad. on tfe,® basis of following assumptions* 

(i) In aqwott® solvents tb® aolvation entropy is due to the water 

»ol®oule8# 

(ii) fh© ehaag® in entropy as a runction of siae of the ion was 

datarffiinad by tha aaefcant of th© ^fraezing" of these water jaolaculas in 

tho first solvation shall# 

(iii) For an alpha subatitxaaat the amount of '•freezing'* of th© water 

»ol®©ul@B will vary inversely aa th® siae of th® substituent. Calcu­

lations a»d0 on this baalB^ assuming raasoaabla values for tl-i® structural 

paramotars* yielded results whioh w©r© ia qualit&tiv® agreemont with the 

experimentally obtained entropies of activation. The values of the 

entropies of aotivation, oonsieting for th© .most part of solvation terras, 

may b@ obtained by studying the solvolysis of tt-^ benisyl tosylates in 

various aqueous media at different tei^eratures laaking the isodieleotric 

ISvaa® md S, Hamnn, I'rans* Faraday Soo«, 47, 26 (1951). 
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oorreetioa* 

Sli© depeadenc® of th« aatropy at solmtion on th© aature of the 

int®rm®41&ts oarbojaium ion is in th® Baa® sequarioe as th© rasonartce 

staTsllization of th© gaseous quasi-ioa and in opposite sequence to the 

energy of solmtioa of this ioa« Thus, one vsrould eapect that in the most 

fftirorable case an increase in entropy of sol-vation on an ion would 

correspond to an overall decrease in th® aoti-vmtioa energy. It must be 

realiued that all qualitatlT® conclusions drawn are valid only in those 

eases in which eolTation effects and resonance effects are considered 

la the overall solvolytie process. It has been assumed that internal 

iciaetic energy dlffereaees for a series of ooB^ounds are negligible. A 

soheiBatic representation of the entropy mriation. is shown below. 

Entropy 

a 
b 

.d 
Q 

sx 

Figure XIV Mtropy Diagram 

Th® entropy of aetivatioa 0£ is considered to be smaller than od for all 

cases. Th® entropy of activation for the gaseous process is the same for 
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both 06,6@s. flis owrall ©atropy of aotivation however. Is aot, o£ being 

smaller i» all o«8®s than od. 

th® oonsi^eratiott of the abors analysis iiyiioates that the direct 

eorrelation b©tw®©a rates (and fr®@ energy of activation.) aad the exp«ri-

iB®ntfti ftetimtioa ®a«rgy is not valid in the gsaeral oase, baoau»e a 

dir®et ©orrelatioa between aetivatioa «a®rgy and entropy, proportion^ 

ality of •ii'S* with -aI* (oans^dered fro® -aF"^ == aE* - f-ag*), does not always 

exist. A jsor® reasoaabl« quantity wfeioh can b® invokad is the reaonanoe 

®n®rgy of th® quasi-earboniwm ion. Figures IS and 14 show that an 

inereasa in rasoiwtao® ©nargy (ab in Figure IS) corresponds to a docroase 

in aotivation ©ntrapy (d£ in Figure 14). 

It is this qualitative oorrespoadeaoe between entropy terms and 

resonance terras that enables us to correlate rho with the configuratioa of 

tha traasitlon state in the oases in whioh the aS* term is not a constant. 

Siao® the entropy and resoaaaee energy teras vary in the opposite manner 

{i_.^.j, the differens® ia th® inereaise ia the aetivation entropy and the 

differenoe ia the daorease in resonance energy) the oonsideration of rates 

oa the basis of oaa tera, usmlly tlm resonanese energy, ie qualitatively 

valid• 
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corrootiott* 

The d^endenoe of the entropy of solvation on the nature of the 

intermediate oarbonium ion is in the same sequence as the resonance 

stabilization of the gaseous quasi-ion and in opposite sequence to the 

energy of solvation of this ion. Thus, one would es^ect that in the aost 

favorable case an increase in entropy of solvation on an ion would 

correspond to an overall decrease in the activation energy. It must be 

realized that all qualitative conclusions drawn are valid only in those 

cases in which solvation effects and resonance effects are considered 

in the overall solvolytic process* It has been assumed that internal 

kinetic energy differences for a series of coB^ounds are negligible. A 

schematic representation of the entropy variation is shown below. 

a 

Entropy 

r, 
BX 

Figure UY Entropy Diagram 

The entropy of activation oc is considered to be siaaller than od for all 

cases. fhe entropy of activation for the gaseous process is the same for 
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both oases. The oTerall entropy of activation however, is not, oc being 

smller in all oases than od. 

The oonslderatioa of the above analysis indicates that the direct 

eorrelation between rates (and free energy of aotivation) and the experi* 

mntal aotivation energy is not valid in the general case, because a 

direct oorrelation between activation energy and entropy, proportion­

ality of AS* with (considered from iaF* = &E* - does not always 

exist. A fflore reascmable quantity which can be invoked is the resonance 

energy of the quasi-oarboniura ion. Figures 13 and 14 show that an 

Increase in resonanoe energy (^ in Figure 13) corresponds to a decrease 

in aotivation entropy (^ in Figure 14). 

It is this qualitative correspondence between entropy terms and 

resonance terras that enables us to correlate rho with the oonfiguraticm of 

the transition state in the cases in idiich the term is not a constant* 

Since the entropy and resonanoe energy terms vary in the opposite laanner 

(^.£., the difference in the increase in the aotivation entropy and the 

difference in the decrease in resonance energy) the consideration of rates 

on the basis of one term, usually the resonance energy, is qualitatively 

valid. 
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